

Journal Projet DIY d'intégration continue auto-hébergée

Posté par David Delassus (site web personnel) le 13 novembre 2017 à 08:24.
Licence CC By‑SA.

Étiquettes :

	python

	docker

	intégration_continue

	selfhost

[image:]

Alors voilà le topo, je me suis monté une infrastructure auto-hébergée contenant :

	stockage de fichier (nextcloud)

	mail (postfix/dovecot/…) et webmail (roundcube)

	git (gogs)

	annuaire ldap (openldap) pour tout le monde

	…

Le tout basé sur du container docker, sur un Kimsufi (40Go de disque, 4Go de RAM).

Je voulais exécuter les TU/TF de mes projets (qui sont sur le gogs) sans passer par un service externe (CircleCI, TravisCI, Codeship, …) qui serait potentiellement payant pour mes projets privés.

J'ai du coup regardé côté Travis, on a une petite 10aine de container docker pour lancer l'infra, pas top le serveur est déjà assez charger.

Après, je sais qu'il y a Jenkins. Mais parlons de manière totalement subjective, je ne suis pas fan de ce qui est fait en Java généralement (surtout pour un serveur qui a déjà 3Go de conso de RAM sur les 4Go totaux).

Puis survient un manque de motivation à faire une recherche google pour trouver une solution qui saura me satisfaire. Je me dis alors "ça doit pas être si compliqué que ça à faire quand même ?".

Aller, de quoi on a besoin ?

	un serveur HTTP qui pour recevoir les requêtes POST de la webhook de Gogs

	un daemon qui va recevoir les demandes d'exécution de job

	une UI web pour voir l'avancement, l'historique, les logs et le résultat des jobs

	une base de données pour stocker tout ça

	un host docker pour créer le container qui va exécuter le job

Au niveau des technos, ça donne donc :

	serveur HTTP en Python/Flask

	Python/celery pour l'exécution des jobs :

	pygit2 pour cloner le dépôt

	les bindings python de docker pour run le container docker

	l'UI ultra minimaliste servie par le serveur HTTP, basée sur materialize

	pyDAL pour la BDD -> https://github.com/web2py/pydal

Le déroulement est simple :

	je push dans mon dépôt, ce dernier contient un fichier .microci.json qui spécifie l'image docker à utiliser et la commande à lancer

	gogs envoi la requếte POST

	le handler sauvegarde le job dans la BDD puis demande à celery d'exécuter la tâche de lancement du job

	le job passe du status PENDING à STARTED

	on clone le dépôt git

	on créé le container docker, et on bind le dépôt git dans le /repo du container

	la commande du container est celle spécifiée dans le .microci.json du dépôt

	si la commande retourne un code d'erreur égal à 0, le job passe à SUCCEED, sinon FAILED

	si une exception est levée à une des étapes précédentes, le job passe à ERRORED

Voilà, moins d'une journée consécutive passé dessus et j'obtiens un petit outil de CI fait maison : https://github.com/linkdd/microci

Attention néanmoins :

	il n'y a pas d'authentification, je la gère au niveau du reverse proxy nginx

	aucun audit de sécurité n'a été effectué, l'outil tourne en interne uniquement sur des projets privés (c'est pas une raison valable cela-dit)

J'ai quand même prévu d'ajouter une webhook pour Github, Gitlab et Bitbucket, mais c'est vraiment pas dans mes priorités pour l'instant.

J'ai publié le projet sous licence MIT pour les curieux, je ne m'attends pas à ce que ce dernier serve à quelqu'un cela-dit (m'enfin, on ne sait jamais).

Sur ce, bonne semaine à tous!

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars124053000avatar.jpg
Rl

