

Journal Sunday Python Pattern : Une machine à état toute simple

Posté par David Delassus (site web personnel) le 17 avril 2022 à 03:14.
Licence CC By‑SA.

Étiquettes :

	design

	pattern

	python

	machine

[image:]

Sommaire

	

	Une implémentation toute simple

	Un premier exemple simple

	Un exemple plus concret

	Conclusion

Bonjour Nal,

Il y a un "design pattern" que je réutilise souvent dans différent langages pour découper la logique métier en plusieurs petit bout de code bien séparés et facilement testable.

Ce design pattern s'apparente très fortement à une machine à état :

	on a la machine a état qui possède un contexte (des données qui seront manipulées et modifiées par l'exécution de l'algorithme)

	chaque état va agir sur ce contexte et retourner l'état suivant à exécuter, ou None si on est arrivé au bout de l'algorithme

Ici, les transitions d'un état vers un autre sont modelées par le code : l'état actuel retourne l'état suivant

Pour les tests c'est assez simple : étant donné un contexte, quel est le type de retour de mon état ?

Une implémentation toute simple

Allez, un peu de code Python pour imager la chose… Au passage, j'en ai fait une librairie disponible sur Github.

Tout d'abord, on va définir le contexte :

from typing import TypeVar

Context = TypeVar("Context")

Le contexte peut être tout et n'importe quoi, mais on va explicitement le nommer pour la suite (comme ça, des outils tels que mypy vont pouvoir vérifier que l'on fait correctement les choses).

Ensuite, on va définir ce qu'est un état :

from typing import Protocol, Generic, Optional

class State(Protocol, Generic[Context]):
 def run(self, context: Context) -> Optional["State[Context]"]
 raise NotImplementedError

NB : Les guillemets sur le type de retour sont nécessaires, car State n'est pas encore complètement défini à cet endroit (cela ne pose aucun problème à mypy).

Ici, c'est l'équivalent Python d'une interface générique, en TypeScript cela donnerait :

interface State<Context> {
 run(context: Context): State<Context> | null
}

C'est ce que l'on va utiliser par la suite pour implémenter les différentes étapes de notre algorithme.

Enfin, on peut définir notre machine à état :

class StateMachine(Generic[Context]):
 def __init__(self, context: Context):
 self.context = context

 def run_from(self, state: Optional[State[Context]]):
 while state is not None:
 state = state.run(self.context)

Et c'est tout. Tant que l'on a un état a exécuter, on continu. C'est l'état qui contrôle le déroulement de l'algorithme.

Un premier exemple simple

Prenons un exemple tout simple, calculer une suite de syracuse :

from dataclasses import dataclass, field

@dataclass
class Stats:
 altitude: int = 0
 fly_time: int = 0
 suite: list[int] = field(default_factory=list)

class ComputeNextNumber(State[Stats]):
 def __init__(self, n: int):
 self.n = n

 def run(self, context: Stats) -> Optional[State[Stats]]:
 context.altitude = max(context.altitude, self.n)
 context.fly_time += 1
 context.suite.append(self.n)

 if self.n == 1:
 return None

 elif self.n % 2 == 0:
 return ComputeNextNumber(self.n // 2)

 else:
 return ComputeNextNumber(3 * self.n + 1)

class Syracuse(StateMachine[Stats]):
 def __init__(self):
 super().__init__(Stats())

 def compute(self, n: int) -> None:
 self.run_from(ComputeNextNumber(n))

fsm = Syracuse()
fsm.compute(5)

assert fsm.context.altitude == 16
assert fsm.context.fly_time == 6
assert fsm.context.suite == [5, 16, 8, 4, 2, 1]

L'entièreté de l'algorithme réside dans la classe ComputeNextNumber.

Dans cet exemple, le type associé à Context est Stats (grâce à State[Stats] et StateMachine[Stats]), et mypy sera en mesure de le vérifier.

Un exemple plus concret

Le second exemple représente un cas plus concret, si on essayait de parser une requête HTTP ?

Pour info, une requête HTTP est composée de :

	une ligne de requête (version du protocole, verbe HTTP, URL)

	zéro ou plusieurs en-têtes

	une ligne vide

	le corps de la requête

Par exemple :

POST /hello HTTP/1.1
Host: example.com

world

NB : Dans les exemples de code suivant, je vais omettre le détail de l'implémentation pour se focaliser sur l'utilisation de ce design pattern.

Je vois ici 3 étapes :

	lire la ligne de requête

	lire une ligne d'en-tête

	lire le corps de la requête

En vérité, il y a une 4è étape qui peut intervenir à plusieurs endroits, pour la gestion d'erreur.

Lançons nous dans le code :

class HTTPContext:
 # ...

class ParseRequestLine(State[HTTPContext]):
 def run(self, context: HTTPContext) -> Optional[State[HTTPContext]]:
 line = context.socket.readline()

 if not line: # EOF
 return UnexpectedError(RuntimeError("EOF"))

 try:
 verb, url, protocol = self._parse_request_line(line)
 return ParseHeaderLine(verb, url, protocol)

 except Exception as err:
 return UnexpectedError(err)

 def _parse_request_line(self, line: str) -> tuple[str, str, str]:
 # ...

class ParseHeaderLine(State[HTTPContext]):
 def __init__(self, verb: str, url: str, protocol: str, headers=None):
 if headers is None:
 headers = {}

 self.verb = verb
 self.url = url
 self.protocol = protocol
 self.headers = headers

 def run(self, context: HTTPContext) -> Optional[State[HTTPContext]]:
 line = context.socket.readline()

 if not line: # EOF
 return UnexpectedError(RuntimeError("EOF"))

 line = line.strip() # delete \r\n
 if not line:
 return ReadBody(self.verb, self.url, self.protocol, self.headers)

 try:
 header_name, header_val = self._parse_header_line(line)

 except Exception as err:
 return UnexpectedError(err)

 self.headers[header_name] = header_val
 return self # MaximumDepthRecursion avoided!!!!

 def _parse_header_line(self, line: str) -> tuple[str, str]:
 # ...

class ReadBody(State[HTTPContext]):
 def __init__(self, verb: str, url: str, protocol: str, headers: dict[str, str]):
 self.verb = verb
 self.url = url
 self.protocol = protocol
 self.headers = headers

 def run(self, context: HTTPContext) -> Optional[State[HTTPContext]]:
 body = context.socket.read()
 context.set_request_info(
 verb=self.verb,
 url=self.url,
 protocol=self.protocol,
 headers=self.headers,
 body=self.body,
)

 return None

class UnexpectedError(State[HTTPContext]):
 def __init__(self, err: Exception):
 self.err = err

 def run(self, context: HTTPContext) -> Optional[State[HTTPContext]]:
 context.set_error_info(self.err)

 return None

Dans cet exemple, on voit tout de suite les avantages :

	on a du code récursif sans limite de récursion, en effet, on quitte la fonction avant de re-rentrer dedans, donc la pile d'appel n'est pas surchargée

	chaque étape de l'algorithme est bien séparée, on évite ainsi une fonction gigantesque

	une gestion d'erreur plutôt simple et sans goto, en effet il suffit de retourner l'état qui va traiter l'erreur

	facile à tester, on va pouvoir "mocker" le HTTPContext et vérifier le type de retour de la méthode run() de chaque étape

Conclusion

Permettre à une fonction de retourner ce que l'appellant doit exécuter ensuite est un pattern très pratique, surtout quand il est question de changement de spec. Imaginons que la syntaxe de notre requête HTTP change, ici seul le code métier devra être revu, et en aucun cas le code qui l'appelle.

Le code qui appelle notre algorithme est entièrement piloté par notre algorithme au final (c'est nous qui lui disons quoi faire ensuite). J'ai simplifié pas mal de code métier dans différent projet en utilisant ce concept, que cela soit en Elixir, en Go, en Python, ou en TypeScript (je serais bien curieux de voir ce que cela donne en Rust).

Et toi Nal ? Tu en as des pattern sympa comme ça ?

	implémentation Python : easy_fsm

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars124053000avatar.jpg
Rl

