

Journal Une 20-aine de lignes de code pour le defer de Go en C++

Posté par David Delassus (site web personnel) le 07 février 2022 à 17:06.
Licence CC By‑SA.

Étiquettes :

	golang

	defer

	c++

[image:]

Bonjour Nal,

Si tu es comme moi, tu détestes Go malgré quelques fonctionnalités géniales et un écosystème vaste et grandissant, qui en font un choix à considérer malgré tes préférences personnelles.

Si tu es comme moi, tu préfères certainement le C++ surtout depuis le C++11. Tu fais d'ailleurs surement du C++20 histoire d'être moderne.

Parmi les fonctionnalités de Go que tu apprécies, il y a le mot clé defer :

func example() error {
 rsrc1, err := CreateResource()
 if err != nil {
 return err
 }
 defer rsrc1.Destroy()

 rsrc2, err := CreateResource()
 if err != nil {
 return err
 }
 defer rsrc2.Destroy()

 DoSomething(rsrc1, rsrc2)

 return nil
}

TL;DR : Il permet d'exécuter du code lorsque l'on quitte cette dernière.

Je veux la même chose en C++. Et en vrai, cela se fait assez simplement. On va juste profiter du concept de destructeur :

#include <functional>
#include <vector>
#include <algorithm>

class defer_frame {
 public:
 using function = std::function<void(void)>;

 private:
 std::vector<function> m_funcs;

 public:
 ~defer_frame() {
 std::for_each(m_funcs.rbegin(), m_funcs.rend(), [](auto &f) {
 f();
 });
 }

 void defer(function fn) {
 m_funcs.push_back(fn);
 }
};

Mais que fait cette classe ? Elle stocke tout simplement un ensemble de fonctions, et lorsque l'instance de la classe est détruite, elle appelle ces fonctions dans l'ordre inverse de leur déclaration.

Quand est-ce qu'est appelé le destructeur d'une classe ? Lorsque l'on quitte la scope actuelle, c'est à dire dans l'un des cas suivants :

	un a atteint la fin du scope avec }

	on quitte la boucle avec break

	on quitte la fonction avec return

	on lève une exception avec throw

Ce qui donne :

void example() {
 defer_frame _;

 auto rsrc1 = create_resource(); // throws on failure
 _.defer([&]() { destroy_resource(rsrc1); });

 auto rsrc2 = create_resource();
 _.defer([&]() { destroy_resource(rsrc2); });

 do_something(rsrc1, rsrc2);
}

La gestion d'erreur est tout de suite un peu plus propre :)

Histoire de taper un peu moins de code, on peut se créer 2 petites macros :

#define new_defer_frame() defer_frame _
#define defer(code_block) _.defer([&]() code_block)

Un petit exemple avec la SDL pour la route :

#include <SDL.h>
#include <stdexcept>

void abort_sdl() {
 throw std::runtime_error(SDL_GetError());
}

void run_sdl_program() {
 new_defer_frame();

 if (SDL_Init(SDL_INIT_EVERYTHING) < 0) {
 abort_sdl();
 }
 defer({ SDL_Quit(); });

 auto win = SDL_CreateWindow(
 "example",
 SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED,
 800, 600,
 SDL_WINDOW_SHOWN
);
 if (win == nullptr) {
 abort_sdl();
 }
 defer({ SDL_DestroyWindow(win); });

 auto renderer = SDL_CreateRenderer(win, -1, SDL_RENDERER_ACCELERATED);
 if (renderer == nullptr) {
 abort_sdl();
 }
 defer({ SDL_DestroyRenderer(renderer); });

 bool running = true;
 while (running) {
 SDL_Event evt;

 while (SDL_PollEvent(&evt)) {
 switch (evt.type) {
 case:
 running = false;
 break;

 default:
 break;
 }
 }
 }
}

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars124053000avatar.jpg
Rl

