

Journal GCC et le mmx/sse{1,2,3)/3dnow

Posté par Ontologia (site web personnel) le 02 octobre 2005 à 20:07.

Étiquettes :
aucune

[image:]

Nos processeurs modernes sont formidables et sont capable de nous proposer des merveilles comme 4 multiplicationss flotantes en un cycle.

Je veux parler des fpu MMX/SSE/3dnow

Je me suis dit, Gcc doit bien gérer ça (?)

Je me suis donc amusé à générer un petit code c

#include <stdio.h>

int main (void)

{

float a1,b1,c1,a2,b2,c2,z,y,x;

int i;

for (i= 45 ; i< 789 ; i++) if (i % 119) a1 = (float)i+75;

a2 = a1+56.456;

b1 = a2 + 743.4454;

b2 = a2 + 7568.45454;

c1 = a2 + 42.456546;

c2 = a2 + 4212213;

printf("%f,%f,%f,%f,%f,%f\n",a1,b1,c1,a2,b2,c2);

x = a1+a2;

y = b1+b2;

z = c1+c2;

printf("%f,%f,%f\n",x,y,z);

return 0;

}

gcc -S testsimd.c -O6 -msse2 -mtune=athlon-4 -march=athlon-4 -o t.asm

qui me produit ce code assembleur :

main:

 flds .LC8

 pushl %ebp

 movl $45, %ecx

 movl %esp, %ebp

 pushl %ebx

 movl $1154949189, %ebx

 subl $164, %esp

 flds .LC0

 andl $-16, %esp

 subl $16, %esp

 .p2align 4,,7

.L6:

 movl %ecx, %eax

 imull %ebx

 movl %ecx, %eax

 sarl $31, %eax

 sarl $5, %edx

 subl %eax, %edx

 movl %edx, %eax

 sall $4, %eax

 subl %edx, %eax

 sall $3, %eax

 subl %edx, %eax

 cmpl %eax, %ecx

 je .L4

 fstp %st(1)

 xorps %xmm0, %xmm0

 cvtsi2ss %ecx, %xmm0

 movss %xmm0, -92(%ebp)

 flds -92(%ebp)

 fadd %st(1), %st

 fxch %st(1)

.L4:

 incl %ecx

 cmpl $788, %ecx

 jle .L6

 ffreep %st(0)

 fldl .LC1

 fadd %st(1), %st

 fxch %st(1)

 movl $.LC6, (%esp)

 fstl 4(%esp)

 fxch %st(1)

 fstps -12(%ebp)

 fstps -88(%ebp)

 flds -12(%ebp)

 fld %st(0)

 fstl 28(%esp)

 fld %st(1)

 faddl .LC2

 fxch %st(1)

 fsts -40(%ebp)

 fxch %st(1)

 fstps -12(%ebp)

 fld %st(1)

 faddl .LC4

 fxch %st(2)

 faddl .LC3

 flds -12(%ebp)

 fstl 12(%esp)

 fxch %st(3)

 fstps -12(%ebp)

 fxch %st(1)

 fadds .LC5

 fxch %st(1)

 fstps -16(%ebp)

 flds -12(%ebp)

 fxch %st(2)

 fstps -72(%ebp)

 fsts -20(%ebp)

 fstpl 44(%esp)

 fstl 20(%esp)

 flds -16(%ebp)

 fxch %st(1)

 fstps -56(%ebp)

 fstpl 36(%esp)

 call printf

 movl $.LC7, (%esp)

 flds -40(%ebp)

 flds -88(%ebp)

 faddp %st, %st(1)

 flds -72(%ebp)

 flds -56(%ebp)

 fxch %st(1)

 fadds -16(%ebp)

 fxch %st(1)

 fadds -20(%ebp)

 fxch %st(2)

 fstpl 4(%esp)

 fxch %st(1)

 fstpl 20(%esp)

 fstpl 12(%esp)

 call printf

 xorl %eax, %eax

 movl -4(%ebp), %ebx

 leave

 ret

Là je me dit, "tiens bizare, on dirait plutôt du code 387, malgré les deux instructions mmx du début"

Poussant l'investigation plus loin, j'apprend que les registres du 387 et mmx/sse sont les mêmes.

Je lit le manuel intel et amd sur le sse2 et le 3dnow, et là j'ai été frappé par la complexité de ses instructions : à part celle dévolues à l'addition, et à la multiplication, elles sont vraiment tordues et pas simple du tout à manipuler pour un humain expérimenté, alors un compilo....

J'ai donc l'affreux doute que le compilateur n'y arrive pas, malgré ce qui est écrit ici : http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/i386-and-x86_002d64-Opt(...)

Est-ce une illusion d'optique, Y a t-il d'autres compilateurs qui le font (celui d'Intel je suppose), ou est-ce vraiment encore un problème du fait de la complexité des instructions SIMD ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars638003000avatar.png

