

Journal La mémoire, goulot d'étranglement : optimiser le cache processeur.

Posté par Ontologia (site web personnel) le 12 octobre 2005 à 00:50.

Étiquettes :
aucune

[image:]

Dans un journal d'il y a deux semaines, nous fûmes gratifié d'un beau débat sur les chutes de performances dues à la fragmentation mémoire :

https://linuxfr.org/comments/628360.html#628360(...)

Cédric nous explique, https://linuxfr.org/comments/628662.html#628662(...)

"Or on alloue quand meme de la memoire pour l'utiliser et c'est l'utilisation qui compte. Si tes donnees au moment ou tu les utilises sont completement disperse en memoire (fragmente) et non aligne, et bien tu vas facilement te prendre un facteur 100 voir de plus en plus grand avec le temps puisque le rapport entre la vitesse du CPU et la latence memoire a tendance a grandir."

mdlh renchérit https://linuxfr.org/comments/628768.html#628768(...) :

"Pour eviter les trolls, je ne vais pas preciser l'architecture sur laquelle je travaille. Mais je voudrais juste dire que je suis assez souvent face a des cas ou 30% du temps d'execution de l'appli est perdu du a des problemes de cache. Pour les fixer, il faut soit:

- reduire les latences en travaillant sur l'organisation des donnees en memoire de telles sortes que les donnees susceptibles d'etre utilisee en meme temps soient sur des espaces contigus

- rendre le programme tolerant a ces latences en utilisant le fameux "Prefetch", ce qui necessite de pouvoir calculer en avance les adresses memoires utilisees."

Donc la problématique serait la suivante :

Soit une fonction quelconque appelée par un call [ptr], si toutes les données utilisées par cette fonction sont, en terme d'adresse mémoire physique, contigües, alors le prefetch cache hardware aura tendance à charger ces données, au moins dans le cache L2 (?)

Alors il y a deux ou trois choses qui ne sont pas encore claires dans mon esprit :

La mémoire est une matrice, et le temps d'accès à tel ou tel endroit de la mémoire est le même, j'ai donc du mal à comprendre pourquoi les données doivent être absolument alignées pour être chargé dans le cache ? Et alignées comment ? Alignées de sorte à bien tenir dans un registre 32/64 bit ou aligné à plus grosses granulités, par exemple deux grosses chaînes de caractères de 16 Ko ?

Et qu'est-ce que veut dire contigues ?

Prenons un exemple :

Imaginons qu'à partir de deux images on veuille obtenir une seule qui soit la première plus l'autre en transparence (un calque sous gimp en qq sorte).

Pour stocker mon image de manière contigu, Je peux les stocker les unes à côté des autres. Mais si elles font plus de 512 Ko, c'est comme si elle n'étaient pas contigûes : elles ne tiennent pas dans le cache (moins d'un Mo à l'heure actuelle).

Je peux aussi décider de les découper "ligne à ligne" et mettre les lignes des 2 images 2 à 2 contigües : 1024 octet de l'une et à côté je stocke 1024 octets de l'autre, "ligne par ligne". Là peut-être que ça passe ?

Je me met dans un cadre où je ne veux pas toucher aux instructions prefetch des processeurs récent.

Est-ce que le second cas me permet d'être sûr que les données seront bien chargée dans le cache ?

Quel est exactement la politique de chargement du cache réalisée automatiquement par les cpu modernes ?

(Autre question, lors d'un changement de contexte, le cache est-il bien vidé ?)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars638003000avatar.png

