

Journal Les types fantômes

Posté par Ontologia (site web personnel) le 25 août 2012 à 17:35.
Licence CC By‑SA.

Étiquettes :

	ocaml

	type

[image:]

Dans une application de gestion (au sens large) qui traite nombre informations, on peut facilement se retrouver avec moult variables textuelles voyageant dans le code au gré des traitements.

Le risque arrive vite d'avoir pléthores de fonctions prenant des chaînes en argument. Évidemment une chaîne étant équivalente à une autre, les fautes d'étourderies et autres valeurs mal traitées traitées (inversions, oublis), impliquent assez vite des erreurs survenant à l'exécution.

En paradigme objet, on peut s'amuser à créer un objet par champ, ce qui peut être lourd et non adapté car les ORMs sont tentent d'insérer une logique objet non adaptée à la logique relationnelle. Les ORMs courrament utilisés implique qu'une ligne de la base soit équivalent à une instance, mais que se passe t-il lorsque qu'une fonction traite divers champs de divers table, ou encore qu'on ait besoin d'une requête un peu complexe pour récupérer certaines valeurs non associées à des objets ?

En paradigme fonctionnel, on a la possibilité d'utiliser les types fantômes, correspondant à un champ de la base de donnée.

Ces types permettent de faire croire que deux éléments, tous deux d'un type de base (genre string ou int) sont de types différents.

L'exemple explicatif sera en ocaml (un haskelien aura la bonté de nous le traduire, je n'en doutes pas).

Les types fantômes en OCaml

(*signature du module, ou encore définition des prototypes comme une interface en java*)
module T : sig
(*on défini nos types spécialisés*)
 type prenom
 type nom
 (*on devra passer par ces fonctions pour créer les chaines typées. *)
 val makeNom : string -> nom
 val makePrenom : string -> prenom
 val fromNom : nom -> string
 val fromPrenom : prenom -> string
end = struct
 (*Nous sommes dans l'implémentation du module, on défini que nos types particuliers sont des chaînes*)
 type nom = string
 type prenom = string
 (*la définition de type dans la signature nous garantie que l'on renvoi bien un type T, alors que l'implémentation est une bête fonction identité*)
 let makeNom s = s
 let makePrenom s = s
 let fromPrenom s = s
 let fromNom s = s
end;;

On va maintenant constater que bien que l'on construit deux chaines, les fonctions makeNom et makePrenom étant codées comme des fonctions identités, on obtient deux types différents

let a = T.makeNom ("1 nom");;
let b = T.makePrenom ("1 prenom");;
b = a;;

Le compilateur nous indique qu'il y a erreur de type, en effet on compare deux types différends :

line 1, characters 4-5:
Error: This expression has type T.nom but an expression was expected of type T.prenom

L'intérêt de cet outil de typage est d'avoir la garantie que l'on ne va pas se tromper de champ, ainsi, dans un découpage Modèle/Vue/Controlleur, toutes les fonctions du modèles vont traiter un type correspondant à chaque champ de la base de donnée :

(* Soit le type :*)
type client = { prenom : T.prenom ; nom : T.nom ; id : int};;

let chercheClientByPrenom prenom nom clients =
 List.find (fun cli -> cli.prenom = prenom || cli.nom = nom) clients

que Ocaml détecte comme une fonction de type :

val chercheClientByPrenom : T.prenom -> T.nom -> client list -> client = <fun>

Conclusion

En obligeant le développeur à n'utiliser, par construction, à la sortie d'un espèce d'ORM ou de simples requêtes SQL, ces types fantômes, on garantie que ce sont bien les bonnes donnés qui seront traités à la bonne place, car le compilateur refusera de compiler s'il y a une erreur.

Il existe d'autre manière de profiter des possibilités de typage de cette race de langage fonctionnel, en particulier en utilisant un type somme, mais je trouve cette manière plus propre, car on regroupe toutes les définitions de "choses" (un nom, un prénom, un numéro de facture) dans un seul module, dédié à cela.

J'avoue ne pas avoir d'idée de la manière avec laquelle on pourrait implémenter ce genre de chose dans des langages objets plus classique. Mon expérience m'a appris que l'utilisation d'ORM automatique classique ne suffit pas à garantir l'absence de problèmes.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars638003000avatar.png

