

Journal Perl, Javouille, Lisaac|(Ruby|SmallTalk|etc..)

Posté par Ontologia (site web personnel) le 20 janvier 2009 à 14:15.

Étiquettes :
aucune

[image:]

	
Ayant pas mal codé en perl ces derniers temps, j'ai fait suffisamment de code pour commencer à avoir un avis à peu près informé de ce langage.

Je suis pourtant loin d'avoir exploré toutes les possibilités offertes, tellement elles sont énormes.

J'utilise principalement Perl pour ce quoi il est fait, c'est à dire analyser de la chaine pour en générer.

Les connaisseurs me demanderont pourquoi je ne code pas avec le langage que je défend : Je n'utilise pas encore Lisaac parce qu'il n'a pas encore de librairie regexp, et quand il en aura une, je m'occuperai très sérieusement de la lib standard de ce langage, dont les améliorations (de lib et de spec) que j'ai proposé sont encore essentiellement théorique pour l'instant.

Javouille, parce que non, je peux pas, je n'utilise ce langage que contraint et forcé, Java est tout sauf un langage intéressant (pas intégralement objet, pas de type block).

Je suis un fana des regexp, le seul bouquin d'informatique de ma bibliothèque s'y consacre intégralement. J'aime beaucoup plus généralement les langage où je défini mon besoin sans expliquer comment y parvenir, les regexp sont très proches de cet idiome, ainsi que SQL.

Je me suis donc attelé à produire une petite liste de choses que j'ai aimé, qui m'ont surpris dans ce langage, en comparant avec ce que je connais en lisaac et en Java, afin de mettre en perpectives les limites de chacun des langages.

Notez que ce qui s'applique à Lisaac fonctionne avec Ruby, Smalltalk et tous les langages à prototypes.

J'ai beaucoup aimé certains concepts, comme :

Les opérateurs de regexp, le matching et la capture facile

if ($line =~ /(\w+)=(\d+)/) {

 	$ident=$1;

 	$value=$2;

}

En java, c'est tout un bordel :

Pattern p = Pattern.compile("(\w+)=(\d+)");

Matcher m = p.matcher(line);

boolean b = m.matches();

if(b) {

 if (m.groupCount() == 2){

 ident = m.group(1);

 value = m.group(2);

 }

}

Quelle lourdeur !!

La lib regexp Lisaac n'existe pas encore. Il est probable que l'on utilise celle de SmartEiffel, suite au traducteur Eiffel->Lisaac que D. Colnet B. Sonntag ont commencé il y a un an et demi (et que je ne parviens pas à compiler : impossible d'installer correctement smarteiffel...).

Je passerai derrière pour modifier drastiquement l'interface de cette lib que j'intégrerai à STRING, car je pense que qu'une lib Regexp à part (ie dans une classe/prototype distinct) est un concept débile. Les regexp s'appliquent aux chaines et ont donc leur place dans l'objet chaine.

Je l'imagine donc en Lisaac comme suit :

 (ident,value) := line.match_and_capture "(\w+)=(\d+)";

Si ça match pas, ident et value valent NULL.

Les tables de hashage builtint

Les tables de hashage sont un outil très puissant et caractéristique de perl.

Je ne vais pas vous la faire en java, il y a n classes différentes pour faire un hash (LinkedHashMap, Hashmap, ...).

En lisaac, c'est à peine mieux, il y en a deux, et ça risque d'augmenter : une histoire de perfs.

J'aime les choses simple et j'aimerai donc qu'il y ait une classe de collection et une classe de hash afin de respecter le concept d'outil générique qui séduit beaucoup de monde dans les langages où ils sont implémentés comme tels.

Des trucs assez énorme en perl sont des écritures du genre :

%hash = ($chaine =~ m/(\w+)=(\d+)/);

sans compter :

my %hash = (1,2,4,5);

On pourrait mettre une liste à la place d'ailleurs.

En java, on oublie, la lib est figé, minimal, on est obligé de se faire sa fonction à soi.

Il faut lire ça pour mesurer la débilité de cette lib : http://java.sun.com/javase/6/docs/api/java/util/HashMap.html :

On peut récupérer la liste des clé et des valeurs, via des énumérations, une pauvre interface qui ne permet d'obtenir une sorte de liste chaînée.

Et... Sait-on pourquoi, on peut avoir la liste des valeurs dans une collection.

Bon soyons sérieux, imaginons qu'on ait la détection automatique de path de code en Lisaac (un saint graal très difficile à implémenter qui consiste à demander au compilateur de choisir le parent le plus adapté pour son code. Ca permettra d'avoir un seul proto collection, un seul proto hash, un seul proto set).

En lisaac, comme tout est à faire, on a le droit d'imaginer des choses intelligentes :

- myhash : HASHED_DICTIONARY[STRING,STRING];

myhash := chaine.to_hash "(\w+)=(\d+);";	

et tant qu'à faire :

- mylist : ARRAY[STRING];

mylist := chaine.to_list "(\w+)=(\d+);";

Les substitution en regexp

Rien de transcendant, et pour une fois on félicite les auteurs de la lib java qui ont écris un replaceAll intelligent : il gère les captures !!

chaine.replaceAll("(\w+)=([a-r]+)","truc=$1;");

Mais... car il y a un mais, l'opérateur perl est en fait beaucoup plus puissant: comment je fais chaine.replaceAll("=([a-r]+)","truc=$1.uppercase;"); ??

 En java, c'est mort (bien évidemment), en Lisaac, on peut encore s'en sortir : au lieu de lui donner une chaine, on lui donne un block de code prenant une liste chaine en argument (les bouts capturés) et renvoyant une chaine.

chaine.replace_all "(\w+)=([a-r]+)" by { nbcap : INTEGER; caps : ARRAY[STRING] ; caps.item i.lowercase +":"+caps.item 2.uppercase; };

Un peu lourd mais efficace.

L'appel de commande bash en quote inverse

C'est typiquement un truc pour unix, mais pour des petits script, c'est vraiment le pied absolu. Pour récupérer le contenu d'une url, ma fénéantise est pleinement assouvie avec un :

my $cont = `curl http://monurl`;

De toutes façons, je ne sais pas coder en shell et j'ai pas l'intention d'apprendre.

La notion de flux facile, avec print MONFLUX ...

La gestion de flux est sympa, car on a qu'à rediriger où on le désir, alors qu'un langage objet implique de créer un objet par flux.

J'ai pas encore assez approfondi ce concept dans perl, mais il y a surement de bonnes idées à prendre.

Les join, grep sur tableaux

On retrouve un peu la notion de map/fold/filter un peu contextualisé. Je considère qu'il y a deux types de langages :

Les langages insuportables où il n'y pas possibilité d'implémenter proprement un map/fold/filter (au hasard, Java...), et les autres.

Les tranches et autres @liste = %h{@t};

L'écriture @liste = %h{@t}; montre vraiment la puissance de la grammaire de perl. On sent que Larry Wall est linguiste et a voulu aller plus loin.

Ca donne des idées. En type ça donne :

HASH(LISTE) => LISTE

quand

HASH(SCALAIRE) => SCALAIRE

Implicitement, ça fait quand même une boucle qui parcours le hash et renvoi une liste de clés !

Ce map implicite sur la liste est très puissant, et ça montre vers où les langages devraient aller (dans le concept) selon moi : revenir à l'analyse du contexte et déterminer ce que le programmeur veut faire. Etre capable de faire des raisonnement de ce genre, mais sur des types beaucoup plus complexe.

Après, il y a des risques...

Ca montre une application intéressante de ce qu'on peut faire si on colle de l'algèbres aux types fondamentaux de nos langages.

Un tableau c'est quoi ? On peut le voir comme le produit de deux ensemble E ∈ |N et F ou tablo[5] est f(5), 5 étant un élément de E, et f(5) un élément de F.

Soit F = Union (i<=n) ui ∈ I et E Union (i<=n) vi ∈ |N

Algébriquement, en posant f bijective (cas idéal, pas de valeur null) ∀ i ∈ I, ∃ j tel que j=f(i)

Or, E est un ensemble, donc une liste d'éléments qu'on peut énumérer avec une fonction G : |N -> E, donc G : |N -> |N

Dans le cas d'un tableau, l'ensemble de départ est toujours un sous ensemble de |N, dans le cas d'une table de hashage, ça peut être n'importe quoi.

Algébriquement f(E) = F, f étant surjective pour toutes les valeurs définies, F étant un ensemble, une liste énumérable, on peut contextuellement faire comprendre au compilateur de quoi il s'agit.

Dans tous les langages que je connais, y compris OCaml, si le message/fonction n'existe pas pour le type, le compilateur répond qu'il ne sait pas quoi faire.

Je n'ai jamais vu le pattern de raisonnement mafonction : ELEMENT1 -> ELEMENT2 => mafonction : COLLECTION[ELEMENT1] : COLLECTION[ELEMENT2].

Sauf en perl... Je sais pas si le cas est traité en dur dans l'analyseur (surement), mais c'est vraiment un concept génial.

C'est ce genre de choses qui font que ce langage a ses fanatiques ;-)

Alors c'est pour ça que je pense à un mécanisme potentiellement dangereux dans pas mal de langages objets : Tout message s'appliquant sur un objet est appelable sur une collection de cet objet.

Par exemple :

ayant

	chaine_result := mastring.replace_all "(\w+)=([a-r]+)" by "rien";

on pourra faire

	liste_chaine_resultat : ARRAY[STRING];

	liste_chaine_resultat := liste_destring.replace_all "(\w+)=([a-r]+)" by "rien";

J'ai pas réfléchi aux côtés noirs de cette idée de map implicite qui casse quand même pas mal le paradigme...

Certaines difficultés m'ont particulièrement énervées en perl, principalement quand ce sont des problèmes inexistant dans d'autres langages. J'ai noté que certaines disparaitront avec Perl 6.

Citons :

La galère dès que l'on veut créer une structure de donnée : pas de notion claire de création de type, il faut créer une table de hashage spécial, il n'y a pas de distinction claire entre type et variable. Ce n'est pas très clair/propre quand on essaye de faire marcher tout cela entre plusieurs fonctions.

On s'en débrouille aisément en les doublant partout où on les utilise, ou en créant un package, mais ces solutions restent lourdes.

- La galère pour passer autre chose que des scalaire en paramètre : on attend perl 6 avec impatience. Personnellement après plusieurs tentatives infructueuses avec les références "comme dans la doc", j'ai laissé tombé et opté pour une très crade variable globale.

- La caractère non typé des variable, voire le point 1 : Ca révèle des surprises, et j'éviterai perl pour du code supérieur à 5000 lignes ou trop complexe, ça deviendrai vite ingérable.

- Les références, c'est puissant, mais c'est un pis allé du à l'absence de notion de type. A l'utilisation c'est pénible, casse-gueule, dangereux, bref tout ce qui m'énerve dans les pointeurs à la C.

Bref, j'aime beaucoup ce langage, même si revenir au procédural est parfois un peu difficile, mais la logique de celui-ci s'y prete bien.

Je pense que je m'en inspirerait grandement lorsque j'aurai enfin ma librairie regexp en Lisaac, afin de pouvoir disposer de toutes les fonctionalités formidables qui y sont offertes, voire peut être plus...

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars638003000avatar.png

