

Journal Repenser les langages et le développement logiciel

Posté par Ontologia (site web personnel) le 07 octobre 2005 à 00:48.

Étiquettes :
aucune

[image:]

Chers tous, j'aimerai vous présenter deux réflexions très profondes qui tentent de remettre en perspective notre façon d'écrire des logiciels, d'architecturer ceux-ci et bien sûr de repenser totalement les langages de programmation.

Cette remise en cause émerge face à l'importance des bugs dans l'industrie logicielle.

Jaron Lanier[1], pionnier de la réalité virtuelle et Victoria Livschitz[2], "senior IT architect", tentent d'analyser les causes du facteur bug dans le développement logiciel.

[1]http://java.sun.com/features/2003/01/lanier_qa1.html(...)

[2]http://java.sun.com/developer/technicalArticles/Interviews/livschit(...)

Je vous les traduis ici en le résumant pour vous simplifier la vie, mais vous pouvez toujours lire la source bien sûr. Je discuterai certains points ensuite (pour les non habitués à cet acronyme NDR signifie "note du rédacteur", c'est à dire moi :-).

Dans son interview, Jaron Lanier pose le constat qu'il est est quasiment impossible de développer de gros logiciels réellement fiables et constate que des projets de plus de 30 millions de lignes de code deviennent insurmontable.

Celui-ci s'interroge d'autant plus sur ces difficultés qu'il constate la capacité humaine à gérer des projets très complexes, dans des contraintes de fiabilité drastiques (Automobile, aviation commerciale et militaire, spatial).

Il prend le parti d'affirmer que cela ne doit pas être considéré comme une fatalité ou comme une limitation de l'esprit humain.

Ceci étant posé, il tente d'analyser ce qu'est un bug, et le traduit comme étant une imperfection. Si l'on compare le fonctionnement d'un programme avec les programmes qui animent l'évolution, on constate que dans le premier cas, un simple changement peut tout faire tomber, tandis que dans le second cas, il y a une évolution incrémentale.

(ndr : un programme ne se construit pas du tout de la même façon : c'est un système multi-agent à un niveau, il n'y a donc pas validation algorithmique de niveau inférieurs sur lesquel s'appuyer. Il n'y a pas un banc de test qu'est un biotope pour tester les "algorithmes" (ou les mécanismes biologiques) qui marchent)

Après cette définition, un historique des concepts de modes de programmation est retracé depuis les origines, c'est à dire depuis la conception de l'ordinateur moderne par Turing, Claude Shannon et Von Neumann.

Jaron Lanier fait judicieusement remarquer que les premiers programmeurs, familier de la télégraphie, formulaient toujours leur programme en terme de transmission d'un signal d'un point A vers un point B.

Le code source de nos programme étant une simulation d'information passant à travers de fil, le passage de paramètres à une fonction étant un exemple.

(ndr : d'où le terme de bugs, insecte...)

Ces notions peuvent être fortement étendue : pour décrire la connection entre un rocher et le sol, vous pouvez le le décrire en terme d'information envoyé sur un fil (ndr : lors qu'on pourrait proposer une reconnaissance de pattern "physique")

On pourrait penser en terme de pattern reconnaissant les différents objets entre eux, ce qui diffère du concept classique consistant à créer et utiliser un protocole.

On reste à l'heure actuel avec un paradigme proche de l'information envoyé par télégraphe. Un paramètre passé à une méthode d'un objet n'est que la simulation d'un signal envoyé dans un câble. Ce qui est innefficace lorsque vous gérez un protocole basé sur le temps (ndr : vous êtes obligé de vous représenter le fonctionnement de la machine qui va réussir à respecter les contraintes de temps).

Ce genre de chose est très susceptible à bugs : tout tombe, comme des dominos.

Avec un système de reconnaissance de forme, les bugs seraient proportionnels aux sources de dysfonctionnement

Suit une explication sur les techniques de reconnaissances de forme, dans un contexte précis : reconnaissance d'expression faciale humaine, et des méthodes qui permettraient de les associer : Wavelet et FFT

Victoria Livschitz, Senior IT Architect, Européenne (Ukrainienne) mathématicienne et joueuse d'échecs. Je trouve sa contribution plus intéressante et plus concrète, s'étant frotté au développement de très gros logiciel, elle en a bien analysé les manques et rebondit sur la problématique très judicieusement introduite par Jaron Lanier. Je trouve in fine son analyse plus intéressante et plus concrète, tout en laissant le mérite à J.L d'avoir si bien conceptualisé la problématique.

Discussion autour du pasé de la donzelle, qui fut une jeune joueuse d'échec et poursuivi des mathématiques comme tout le monde dans sa famille, pour s'orienter vers l'informatique.

Vient la problématique "Que voyez-vous comme gros problèmes lors de l'écriture de logiciels ?"

Victoria Livschitz raconte son expérience en tant qu'ingénieur de développement sur un énorme projet commandité par la firme Ford.

Elle affirme avoir été choquée par la déficiance de l'ingénierie en informatique en règle général, ajoutant que les gros projets sont rarement couronné d'un succès total.

Les "gros" logiciel, dit-elle sont généralement de qualité pauvre, de service rendu médiocre, difficile à faire migrer, et mal adaptés aux besoins des autres entreprises (trop contextuel à chaque fois), technologiquement obsolète au bout d'un certain temps, et fonctionnellement identique à plein d'autres logiciels adaptés à chaque contextes.

"Tout ça pour des millions de dollars en développement, maintenance - et pour quoi ? D'un point de vue ingénieural, zéro innovation et zéro valeur incrémentale ont été produite"

L'intervieweuse l'interroge alors sur l'analyse développée par Jaron Lanier

Victoria Livschitz se déclare tout à fait en accord avec Jaron Lanier et problématise de la même façon.

Elle déclare être intéressé par l'idée de remplacer la reconnaissance de forme à l'opérateur classique math/no match dominant dans la programmation (les if/then. case/switch, while, repeat/until), la logique floue l'ayant toujours intêressée. Sa quête de de trouver une réponse est selon elle "orthogonal" à celle de Jaron.

Victoria relève deux approches pour créer des logiciels moins complexes tout en répondant aux même besoins. Comme en médecine, il y a l'approche préventive et l'approche "currative".

L'approche préventive a énormément fait de progrès ces trentes dernières années :les langages fortement typés, objets, haut niveaux, garbage collector, la gestion des exceptions (ndr :les contrats), les AGL.

Ceci étant dit, de nombreux bugs ne peuvent être solutionnés par ce genre d'approche en ce qu'un bug, dans le fond, reste un comportement undésirable (" a sign of recognition") non attendu lors de la spécification. C'est un problème mécanique d'un algorithme qui ne fait pas ce qu'on voulait qu'il fasse (ndr : on retrouve le problème de l'humain avec la perfection, et le manque d'utilisation de l'intuition humaine selon Victoria Livschitz).

Mais il arrive que le l'algorithme soit mécaniquement bon, mais que cette mécanique soit fausse par rapport à l'ensemble.

Le premier est un bug de programmation, l'autre d'architecture, bien plus grave.

Les constants problèmes de sécurité des produits Microsoft est avant tout du à des causes architecturales, Java c'est mieux avec son architecture "sandbox".

Victoria Livschitz ne pense pas que les avancées futures dans le domaine pourra apporter des solutions aux bugs architecturaux : un bout de code se comportant de façon appropriée dans une version précédente ne mettra à dysfonctionner lors du changement de contexte.

Elle affirme que le programme ayant changé de domaine, celui-ci doit s'adapter. Un bug est une simple manifestation d'un nouvel désalignement, et c'est la correction de ce bug et non sa prévention qui compte.

Dans cette optique le polymorphisme et l'héritage sont des concepts vraiment novateurs, bien que de nombreux bugs demandent plusieurs niveaux de refactoring toujours dangereux et imprévisibles.

L'intervieweuse lui demande alors si l'on peut considérer la complexité comme une principale raison d'existence des bugs et si elle dispose d'idées concrètes afin de la réduire.

Victoria Livschitz propose deux principale armes : l'une consiste à laisser s'exprimer l'intuition et l'expérience du développeur et l'autre de décomposer le tout en partie simple puis de les aggréger en un tout.

Les choses apparraissent plus simple lorsque nous faisons appel à notre intuition, à un niveau de conscience totalement concentré sur des choses difficiles. Donc le contraîre de la complexité - et la meilleur arme contre lui - est l'intuition

L'ingénieurie logiciel devrait utiliser l'intuition des développeurs, puis leur expérience, cela permettra au professionnel d'être à l'aise avec cette complexité.

L'ITW lui demande (on dans les équipes de recherches de Sun) si Java est capable de cacher totalement cette complexité au développeur.

Victoria Livschitz est assez franche et explique qu'elle pense qu'on a pas du tout avancé dans la résolution de ce problème (ndr: ce qui rejoint J.L qui expliquait que la programmation avait évolué sur la base des premiers ordinateurs où l'on manipulait des boutons ie. on envoyait des signaux dans des câbles)

Reprenant un peu les idées de J.L, elle les complète en expliquant que la syntaxe reste esotérique. En mathématique on apprend plusieurs années à maîtriser des concepts et une syntaxe permettant de les exprimer en terme de preuve absolu. Le problème, en programmation, est qu'on ne décrit que des métaphore de fonctionnement le plus correcte possible par rapport à notre perception de la vie de tous les jours, où de processus humains de traitement de donnée (au sens où il y a un contenu et une structure ontologique http://fr.wikipedia.org/wiki/Ontologie_(informatique)(...) de ces données)

Les programmeurs ne sont pas aussi sélectionnés que des mathématiciens, qui ne sont pas aussi nombreux , et les études peuvent être plus courtes.

Pendant longtemps, les développeurs manipulaient des sous-programmes, fonctions, structures de données, boucle et contructions abtraites qui néglige, sourde l'intuition humaine.

Apparait la programmation orienté objet.

On peut pour la première fois créer des construction beaucoup plus proches du monde réel. C'est un concept globalement accessible même par un non informaticien (ndr : dans sa globalité oui, j'ai pu le vérifier, parce lorsqu'on rentre dans les détails avec la différence entre paramètre par référence ou par copie, là ça coince vite...).

L'OO a permis à l'industrie de créer des logiciels beaucoup plus complexes qu'en procédural, mais il atteint maintenant une limite : personne ne peut confortablement manipuler un système de plusieurs milliers de classes.

Dans les langages OO, l'objet est la seul abstraction disponible, l'univers que l'on souhaite définir est uniquement modélisable avec cette construction, en maniant la généalogie (ndr : en anglais inheritance signifie généalogie, terme que je préfère au moins approprié français "héritage) et la notion de collections. Ce qui peut rendre les choses assez difficile : le monde est trop riche pour être exprimé avec cette syntaxe trop frustre.

Considérons les concepts courament utilisé afin de décrire le monde : avant/après, causse/conséquence, Etat d'un système. Les concepts "préparer un café", "assembler un véhicule, "diriger un rover sur Mars" ne peuvent être décomposé facilement en objets simples. Traité avec l'approche OO, leur programmation sera inintuitive.

Les séquences de programmes eux-même : Que ce passe t-il en fonction de quel conditions basé sur quel causalité - n'ont pas de modalité d'expression, de représentation en OO, parce les langages OO n'ont pas de concept de séquence, d'état, ou de cause.

La notion de processus est habituel dans le monde réel et dans la programmation. tous les mécanismes élaborés ont été conçu pour gérer des transaction, workflow, orchestration, threads, protocole et tout concept intrinsèquement procédural.

Ces mécanismes complexes compensent la notion de gestion du temps absente (ndr : un objet n'est pas un agent, il n'est pas vivant, il est instancié ou détruit, c'est tout).

La notion d'avant/après n'est pas implémentable à la base, il faut le construire. Il faudrait que l'avant/après, l'état système soit au coeur du langage.

Victoria Livschitz envisage un langage plus riche que les langages OO basé sur un certains nombres de primitives plus intuitives, de métaphores plus accessibles comme des objets, des conditions et processus. On pourrait imaginer cela comme une extension aux syntaxes existantes.

L'intervieweuse récapitule sa thèse : La programmation doit être plus intuitive pour les développeurs et mieux simuler le monde réel, cela aiderait les programmeurs à écrire des logiciels avec moins de bugs ?

Victoria Livschitz répond que c'est exactement sa thèse, ajoutant que c'est un combat contre la complexité et une tentative de mieux permettre l'expression de l'intuitivité du développeur.

Elle cite visual basic comme exemple, qui a permis de vulgariser le développement.

Mais étendre le modèle objet pour étendre le nombre de primitives n'est qu'une partie de la guerre contre la complexité, l'autre est un meilleur modèle d'aggrégation/décomposition de ce qui est encore alambiqué et fragmenté à l'heure actuel.

Et cela, sera toujours d'une extrême importance.

Hiérarchies et collections sont les seuls outils dont on dispose pour définir les relations entre objets et comment elle devraient être organisées en structures manageable (ndr : J'ai toujours un problème avec la traduction de manage en français : gestion est trop passif).

Même si la nature est rempli de structure hiérarchiquement descriptibles et de collections (un arbre est une hiérarchie d'objet, avec des collections de feuilles par exemple, de chloroplaste, etc...), ce duo est trop limité pour nos besoins.

Il existe plein d'autres relations qui satisferaient : Maître/Esclave, relation plusieurs à plusieurs (ndr : SMA ?), component/container, intervalles, element/métradonnées, et plein d'autres.

Peut-on condidérer l'objet comme la seule unité valable ? Nous ne possédons que le "Possède A", "Est A".

Une fois intégrés, on pourrait imaginer la définition d'élément dialoguant avec une sémantique beaucoup plus riche, un logiciel graphique de "design pattern" permettrait de documenter comment on aggrège les éléments entre eux dans le système collectif (ndr :voir thèse de Pierre-Michel Ricordel [3])

Nous avons besoin d'une architecture composant autonome assez riche pour couvrire tous le besoins, de la distribution à la réutilisation.

Ces composants disposeront de d'autres relations que les relations "Is-A" "Has-A". L'héritage ne sera qu'une relation parmi d'autres.

Il faudra alors créer de nouveaux supports théoriques à la réutilisabilité, peut être dans une voie évolutionniste afin que le refactoring ne soit pas une opération destructive sémantiquement et syntaxiquement garanties par le compilateur

Victoria Livschitz affirme qu'à son avis, il s'agit de la meilleur méthode pour exprimer la puissance du logiciel.

Ces deux contributions m'apportent plusieurs questions et réflexions que je jette ici aux lions (Ave Caesar, morituri te salutant)

	Sociologiquement, tout d'abord : Y aura t-il une résistance des informaticiens quand à la perte de leur pouvoir quand à la complexité technique ?

Oui et non, je pense, car certes, n'importe quel cadre d'une entreprise pourrait s'écrire son petit logiciel, comme il y arrive honorablement aujourd'hui avec Excel, Access, mais je pense que seul un "oeil" d'informaticien, pardon de spécialiste des systèmes d'informations, pourra solutionner des problèmes complexes.

Cela permettrait de former des professionnels sur les systèmes d'informations et l'organisation de l'entreprise. Et on pourra relocaliser : il faudra être proche de l'entreprise pour cela..

	 Une autre question de développeur celle là : On peut bien sûr construire des objets permettant d'autres relations que le match/no match en les construisants par rapports aux axiomes existants, mais la syntaxe des langages actuels est-elle alors adaptée ? Je pense AMHA qu'il faudra reprendre un minimum la syntaxe et faire évoluer les concepts de compilation pour intégrer de tels relations. Cela nécessitera aussi de recourir à des langages acteurs ou plutôt orienté agent, qui, pour le moment reste confiné en laboratoires d'où il sortent assez rarement(voire [3].

[3]http://rangiroa.essi.fr/rapports/2001/01-these-ricordel.pdf(...)

Vous trouverez ici ftp://ftp.enseeiht.fr/pub/logiciel/thesis/Matthias.Colin/thesecoli(...) , dans les premières pages de sa thèse, un très bon résumé des concepts étudié et développés pour les langages acteurs.

Il y a quelques temps, je me suis englué (je suis un assez mauvais codeur) en Java en faisant un petit jeu monojoueur consistant à diriger un sous-marin (cap et vitesse) et à courir derrière les bateaux ennemis pour les couler. C'est là que je me suis rendu compte, comme Victoria, que les paradigmes OO sont très limité. On se rend compte que le simple fait de vouloir coder le comportement d'un bateau détectant notre sous-marin dans le radar et demandant de l'aide à un bateau de guerre aux alentour est extrêmement pénible à coder.

J'ai vraiment eu l'impression de devoir rentrer un cube dans une fente en forme de disque.

Un langage agent avec possibilité d'envoyer des messages multipoint (que j'ai commencé à définir d'ailleurs) serait beaucoup plus approprié pour ce genre de chose.

La gestion du temps réel y serait aussi importante.

Le problème est que pour cela, il faudrait pratiquement un nouvel OS, temps réel, avec une gestion des thread poussée (temps réel) et capable d'assurer absolument qu'un programme terminera son exécution à temps, et pour cela il faut donner des informations au compilateur afin qu'il évalue ce temps de calcul, par analyse de flot.

Deux liens en plus pour les courageux ;-)

La discussion sur /. autour de l'interview de Victoria Livschitz :

http://developers.slashdot.org/comments.pl?sid=96750&threshold=(...)

Quelques réflexions sur son blog :

http://blogs.sun.com/roller/comments/alur/Weblog/what_is_a_micro_ar(...)

Mon horizon est à une ou deux décennies, il ne s'agit pas de commenter les dernières évolutions cosmetiques de tel ou tel langage, mais de s'attaquer au mal à sa racine :-)

Je rappelle, à toutes fins utiles le questionnement de mon journal :

A quoi pourrait ressembler un langage accessible mélangeant des concepts OO avec d'autres primitives, en intégrant peut-être d'autres logiques (fonctionnelles ? Logique ? Agent ? Acteur ?) et surtout en permettant à l'intuition de s'exprimer et ainsi de réussir d'énormes projets logiciels.

(Par accessible j'entend facilement compréhensible par un enfant de 10 ans par exemple. Logo était un très bon exemple.)

En d'autres termes, quel sens donner à des primitives comme Maître/Esclave, Composant/Containeur, intervalles, élement/métadonnées, Chef de groupe (dans un contexte agent), objet physique, objet mécanique, etc..

Quel autres primitives créer ? Quel sens leur donner ? Quel besoins pourraient-elles couvrir ?

Comment permettre aux développeurs d'exprimer la puissance de leur intuition ?

Comment rendre l'écriture de logiciel moins complexe ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars638003000avatar.png

