

Journal Un OS réécrit son code à la volée

Posté par Ontologia (site web personnel) le 07 juin 2007 à 13:25.

Étiquettes :
aucune

[image:]

Il arrive que quelques extraterrestres échouent sur notre planète, qui sans eux serait parfois monotone.

Il y a 20 ans déjà Henry Massalin s'est amusé à créer sa propre machine autour d'un 68000, la quamachine, en l'honneur de son compagnon koala, dont l'onomatopée lui servant de communication se résume souvent à un "Qua !".

Basée à quelques années plus tard sur deux 68030, elle disposait de 256 Ko de Rom, 2,5 Mo de Ram, 4ko de mémoire vidéo, un circuit son maison, et poussait jusqu'à 50 Mhz les deux 68030, grace à un système tordu permettant de multiplexer la mémoire.

Il a créé Synthesis, son propre OS, écrit avec amour en assembleur 68000. Synthesis est conçu comme une sorte de Noyau Mach avec des fonctionalités de type Unix.

Mais le plus intéressant est certainement la capacité de ce noyau à réécrire son code à la volée.

Henry Massalin, créateur de musique électronique souhaitait disposer d'un OS capable de tenir la charge face à ses besoins créatifs, il lui fallait donc un OS sur optimisé, disposant de fonctionalités temps réelles performantes.

L'optimisation de son code repose sur plusieurs idées.

Par exemple, il va détecter un calcul dans lequel un paramètre est un 1 ou un 0, dans ce cas

A=1

B*A+A*A devient B+1, on économise 2 multiplications.

Plus généralement, il propose le raisonnement suivant :

Suposons que l'on doive exécuter une fonction

Fbig(p1,...,pn)

On détecte que p1 est une constante.

On va donc chercher à factoriser Fbig pour écrire

F2(p1) qui renvoi une fonction Fsmall prenant (p2,..., pn) en paramètres.

Le but est que l'on ait pour m exécutions:

Cout(F2)+m*Fsmall(p2,...,pn) < m*Fbig(p1,...,pn)

Autre idée est de supprimer les jump dans le code dus à une structuration de celui-ci basée sur des spécifications. Autrement dit, il inline le code à la volée.

Le noyau est basé sur des sortes d'objets, les Quajets, ces objets ne supportent pas l'héritage, et sont codés en assembleur.

cela permet de structurer le code de belle façon.

La thèse de Massalin resselle aussi une intéressante contribution sur la concurrence et la synchronisation.

Il désirait en effet éviter de désactiver les interruptions à tout bout de champ sur son système, éviter d'utiliser des systèmes à verrou pour gérer la concurence sur sa machine dotée de deux 68030.

J'ai pas encore tout lu et donc compris, je n'en dirai donc pas plus.

Il développe aussi une conception intéressante de l'ordonancement à "gain fin", qui consiste d'après ce que j'ai compris, à ne plus baser l'ordonancement sur le temps, mais sur les interruptions. Ce qui semble être une bonne idée.

Pareil, je n'ai pas lu, je n'en dirai pas plus.

Tout cela n'est pas tout jeune, le document a été écrit en 1992.

Le lien : http://www.cs.columbia.edu/~library/TR-repository/reports/re(...)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars638003000avatar.png

