

Journal Sandboxer des applications avec bubblewrap (1/3) : un shell basique

Posté par Moonz le 24 décembre 2023 à 17:13.
Licence CC By‑SA.

Étiquettes :

	bubblewrap

	sandbox

	chatgpt

[image:]

Écrit par moi en anglais, traduit à 95% par ChatGPT.

[image: XKCD #1200: Authorization]

Tout le monde sait que permettre à différentes applications d'accéder librement aux données des autres n'est pas exactement optimal d'un point de vue sécurité. Alors que les serveurs bénéficient de conteneurs pour isoler les applications entre elles, nous manquons d'une bonne solution pour le bureau. Ou pas ?

Il y a, évidemment, flatpak. Malheureusement, flatpak se présente comme un "cadre de distribution et de sandboxing d'applications Linux". Ça ne va pas le faire. J'ai déjà une distribution. J'en suis très content. Je veux exécuter les applications de ma distribution de manière isolée.

Heureusement, la partie sandboxing de flatpak est en fait un projet séparé, moins connu : bubblewrap. Essayons de l'utiliser pour sécuriser notre bureau.

Commençons par l'une des choses les plus simples à sandboxer, un shell :

$ bwrap zsh
bwrap: execvp zsh: Aucun fichier ou dossier de ce type

Euh… quoi ?

Revenons à ce que fait bubblewrap : il crée en fait un nouveau espace de noms de système de fichiers, vide. Le mot-clé ici est "vide". Il n'y a pas d'exécutable zsh dedans. Corrigeons cela :

$ bwrap --ro-bind /usr /usr /usr/bin/zsh
bwrap: execvp /usr/bin/zsh: Aucun fichier ou dossier de ce type

Bizarre. Mais la commande suivante vous dira ce qui a échoué :

$ ldd /usr/bin/zsh
 linux-vdso.so.1 (0x00007fff5d189000)
 libcap.so.2 => /usr/lib/libcap.so.2 (0x00007ff55abe2000)
 libncursesw.so.6 => /usr/lib/libncursesw.so.6 (0x00007ff55ab6b000)
 libm.so.6 => /usr/lib/libm.so.6 (0x00007ff55aa7e000)
 libc.so.6 => /usr/lib/libc.so.6 (0x00007ff55a89c000)
 /lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2 (0x00007ff55ad24000)

Les bibliothèques partagées. Donc, nous avons besoin de /lib64 également. Pour être sûrs, incluons aussi /bin, /lib et /sbin, bien qu'ils ne soient que des liens symboliques sur mon système et ne devraient pas être nécessaires. Ajoutons également /etc pour des choses comme /etc/profile.d ou /etc/localtime :

$ bwrap --ro-bind /usr /usr --ro-bind /bin /bin --ro-bind /lib /lib --ro-bind /lib64 /lib64 --ro-bind /sbin /sbin --ro-bind /etc /etc /usr/bin/zsh
/usr/share/zsh/scripts/newuser:5: aucun fichier ou dossier de ce type : /dev/null
zsh-newuser-install:23: aucun fichier ou dossier de ce type : /dev/null
zsh-newuser-install:24: aucun fichier ou dossier de ce type : /dev/null
$

Oui, /dev/null est plutôt important. De nombreuses applications en auront besoin. Nous pourrions le lier (en utilisant --dev-bind), mais il y a aussi /dev/zero, /dev/urandom, et probablement d'autres. Nous pourrions lier /dev, mais cela signifierait que les applications sandboxées auraient accès aux périphériques — cela ne semble pas être une bonne idée. Heureusement, bubblewrap a pensé à tout et nous a fourni une option --dev (et une option --proc pour des problèmes similaires). Nous avons aussi --tmpfs pour /tmp. Utilisons-les :

$ bwrap --ro-bind /usr /usr --ro-bind /bin /bin --ro-bind /lib /lib --ro-bind /lib64 /lib64 --ro-bind /sbin /sbin --ro-bind /etc /etc --proc /proc --dev /dev --tmpfs /tmp /usr/bin/zsh
$ ls /
bin dev etc lib lib64 proc sbin tmp usr

Remarquez l'absence de /home : nous ne l'avons pas lié, donc il n'est pas accessible. Tout programme compromis qui est exécuté dans cette session shell sera incapable d'accéder à nos données personnelles (en l'absence de toute exploitation d'escalade de privilèges donnant un accès root).

Bien ! Nous sommes dans un sandbox ! Nous sommes en sécurité !

Vraiment ?

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 21592 12736 ? Ss 10:37 0:01 /sbin/init verbose
root 2 0.0 0.0 0 0 ? S 10:37 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 10:37 0:00 [pool_workqueue_release]
root 4 0.0 0.0 0 0 ? I< 10:37 0:00 [kworker/R-rcu_g]
root 5 0.0 0.0 0 0 ? I< 10:37 0:00 [kworker/R-rcu_p]
root 6 0.0 0.0 0 0 ? I< 10:37 0:00 [kworker/R-slub_]
root 7 0.0 0.0 0 0 ? I< 10:37 0:00 [kworker/R-netns]
root 12 0.0 0.0 0 0 ? I< 10:37 0:00 [kworker/R-mm_pe]
...
systemd+ 426 0.0 0.0 91220 8468 ? Ssl 10:37 0:00 /usr/lib/systemd/systemd-timesyncd
avahi 438 0.0 0.0 8932 4776 ? Ss 10:37 0:00 avahi-daemon: running [desk.local]
dbus 439 0.0 0.0 9752 4976 ? Ss 10:37 0:00 /usr/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile --systemd-activation --syslog-only
root 441 0.0 0.0 11016 7284 ? Ss 10:37 0:00 sshd: /usr/bin/sshd -D [listener] 0 of 10-100 startups
...
sloonz 1427 0.0 0.4 513896 70208 ? Sl 10:38 0:13 /usr/lib/firefox/firefox -contentproc -parentBuildID 20231130105227 -prefsLen 44628 -prefMapSize 241694 -appDir /usr/lib/firefox/browser {5508672c-0163-4fa1-adeb-7f40773b136b} 3 true rdd
...

Oups…

$ env
...
SHELL=/bin/zsh
WORDCHARS=*?_-.[]~=&;!#$%^(){}<>
HISTSIZE=50000
I3SOCK=/run/user/1000/sway-ipc.1000.548.sock
SSH_AUTH_SOCK=/run/user/1000/ssh-agent.socket
CREDENTIALS_DIRECTORY=/run/credentials/getty@tty1.service
MEMORY_PRESSURE_WRITE=c29tZSAyMDAwMDAgMjAwMDAwMAA=
XCURSOR_SIZE=24
...
AWS_SECRET_ACCESS_KEY=[redacted]

Oh non. Renforçons le sandboxing.

$ bwrap --help
...
 --unshare-all Unshare every namespace we support by default
 --share-net Retain the network namespace (can only combine with --unshare-all)
 --unshare-user Create new user namespace (may be automatically implied if not setuid)
 --unshare-user-try Create new user namespace if possible else continue by skipping it
 --unshare-ipc Create new ipc namespace
 --unshare-pid Create new pid namespace
 --unshare-net Create new network namespace
 --unshare-uts Create new uts namespace
 --unshare-cgroup Create new cgroup namespace
 --unshare-cgroup-try Create new cgroup namespace if possible else continue by skipping it
...
 --clearenv Unset all environment variables
...

Que voulons-nous dissocier ("unshare") ici ?

Dissocier l'espace de noms réseau est une très mauvaise idée, à moins que vous ne vouliez empêcher une application d'accéder à tout réseau (y compris localhost).

Dissocier l'espace de noms des PID (processus) semble être une évidence, tout comme vider l'environnement.

L'espace de noms IPC est probablement, la plupart du temps, sans problème à dissocier (les éléments importants comme les fifo, les pipe et les sockets unix sont dans l'espace de noms du système de fichiers, à l'exception des sockets unix abstraits qui sont dans l'espace de noms réseau), mais il est aussi difficile de voir l'intérêt (le processus compromis devrait trouver un programme exploitable fonctionnant dans l'environnement non sandboxé dont le vecteur d'attaque serait les files d'attente de messages POSIX ou l'IPC SYSV, qui en pratique sont très rarement utilisés par les applications de bureau). Nous verrons plus tard que sandboxer des applications graphiques peut entraîner des complications, et dissocier l'espace de noms IPC pourrait ajouter des bugs vraiment difficiles à traquer en plus de ceux-là. Nous aurons déjà assez à faire lorsque nous essaierons de sandboxer des applications de bureau, donc ne dissociions pas cela.

Je ne vois pas l'intérêt de dissocier l'espace de noms UTS (il s'agit de vider le nom d'hôte), de même pour cgroup (à moins éventuellement que vous ne vouliez appliquer des limites au nouveau cgroup créé plus tard, mais je n'ai jamais essayé). Je ne vois pas non plus de gros problème à les dissocier. Tirez à pile ou face pour décider.

Toute cette histoire de partager ou non l'espace de noms utilisateur est une (petite mais ennuyeuse) boîte de Pandore que je ne tenterai pas de couvrir extensivement ici (probablemet jamais). Pour faire court : cela dépend de la manière dont votre distribution a installé bubblewrap (suid ou non) et aura des effets minimaux (le plus grand étant que dissocier signifie que les fichiers appartenant à root appartiendront à personne dans le sandbox). Contentons-nous du comportement par défaut sur votre système (quel qu'il soit).

Ajoutons donc --clearenv et --unshare-ipc à nos arguments de base pour bubblewrap. Si vous êtes particulièrement paranoïaque, vous pouvez ajouter --unshare-uts, --unshare-user et --unshare-ipc :

$ bwrap --ro-bind /usr /usr --ro-bind /bin /bin --ro-bind /lib /lib --ro-bind /lib64 /lib64 --ro-bind /sbin /sbin --ro-bind /etc /etc --proc /proc --dev /dev --tmpfs /tmp --clearenv --unshare-pid /usr/bin/zsh
$ ls /
bin dev etc lib lib64 proc sbin tmp usr
$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
sloonz 1 0.0 0.0 2720 1152 ? S 15:39 0:00 bwrap --ro-bind /usr /usr --ro-bind /bin /bin --ro-bind /lib /lib --ro-bind /lib64 /lib64 --ro-bind /sbin /sbin --ro-bind /etc /etc --proc /proc --dev /dev --tmpfs /tmp --clearenv --unshare-pid /usr/bin/zsh
sloonz 3 0.0 0.0 6084 4436 ? S 15:39 0:00 /usr/bin/zsh
sloonz 6 100 0.0 8024 3988 ? R+ 15:39 0:00 ps aux
$ killall firefox
firefox: no process found
$ env
PWD=/
HOME=/home/sloonz
LOGNAME=sloonz
SHLVL=1
OLDPWD=/
_=/bin/env

Cela semble bon pour une application sans état (par exemple, si vous voulez sandboxer curl https://ipinfo.io pour obtenir votre IP). Que faire si vous voulez conserver des fichiers entre les sessions ? Eh bien, utilisons un répertoire temporaire pour le home :

$ mkdir ~/sandboxes/my-node-project
$ bwrap --ro-bind /usr /usr --ro-bind /bin /bin --ro-bind /lib /lib --ro-bind /lib64 /lib64 --ro-bind /sbin /sbin --ro-bind /etc /etc --proc /proc --dev /dev --tmpfs /tmp --clearenv --unshare-pid --bind ~/sandboxes/my-node-project ~ --chdir ~ /usr/bin/zsh
$ npm install whatever

De cette façon, node_modules sera installé dans ~ (dans votre sandbox) ou ~/sandboxes/my-node-project (dans l'environnement non-sandboxé). Si vous installez par hasard une bibliothèque node compromise, cela ne compromettra pas votre répertoire personnel.

Vous voudrez peut-être lier certains fichiers de configuration courants, comme ~/.zshrc (à moins que vous n'ayez une variable d'environnement AWS_SECRET_ACCESS_KEY dedans) ou ~/.config/nvim. Souvenez-vous de les lier en lecture seule (--ro-bind au lieu de --bind) ; sinon, un processus compromis pourrait y écrire une charge malveillante pour obtenir un accès la prochaine fois que ces fichiers sont lus (et exécutés) dans votre environnement non-sandboxé.

Dans la prochaine partie, nous verrons les bases de l'exécution d'applications graphiques sandboxées comme un IDE ou votre navigateur.

P.S.: à la fois l'article initial en anglais et la traduction quasi-automatiques en français est une expérience nouvelle pour moi (je n’ai jamais réellement écrit d’article, ou tenu de blog). Lancez des tomates pour que ça s'arrête, des fleurs pour que ça continue. La partie 2 est déjà bien avancée et sera probablement publiée quelle que soit la réaction, la partie 3 n’est que partiellement dans ma tête et peut être expulsée à tout instant.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/33b33fa00d5704662acf01f1c1a7303f562d9a20f058b78806a59432.png
F SOMEONE. STEALS MY LAPTOP WHILE ™M
LOGGED N, THEY CAN READ MY EMAIL, TRKE MY
MONEY, AND [MPERSONATE. ME TO MY FRENDS,

BUT AT LEAST THEY (ANT NSTALL
DRIVERS WITHOUT MY PERMISSION.

