

Journal Port de taptempo en Rust

Posté par Morovaille le 03 mars 2018 à 20:00.
Licence CC By‑SA.

Étiquettes :

	rust

	taptempo

[image:]

Sommaire

	Description du Rust

	Préparation du projet

	Gestion des paramètres

	La structure App

	La macro print_now

	Le main

	Conclusion

Comme promis, voici un petit journal sur mon port de taptempo en Rust. Je n'ai pas porté le mécanisme d'internationalisation, puisque finalement on peut le faire comme dans le code C++, avec gettext. Ce n'est pas le plus intéressant du projet, et il n'existe pas de mécanisme d'internationalisation que je trouve vraiment satisfaisant et idiomatique pour le moment.

Description du Rust

Pour ceux qui ne connaissent pas le langage, la façon la plus simple de le décrire est de dire que c'est un croisement entre le C et le Haskell. Comme le C, il est bas-niveau (on peut faire en Rust ce qu'on ferait en C: programmation de micro-contrôleurs, d'OS, etc.) mais il tire du Haskell le fait d'être "orienté expression", sa saveur fonctionnelle, la richesse de son système de types.

Ce qui fait sa particularité et son immense avantage, c'est qu'il est memory safe et thread safe. Le langage garantit qu'il n'y a pas de pointeur invalide ou de "data race", le tout sans ramasse-miettes.

Préparation du projet

Un autre point est que comme beaucoup de langages modernes, le systèmes de dépendances (appelées crates en Rust) est très simple. On rajoute une ligne dans le manifeste du projet (appelé Cargo.toml) et le gestionnaire de build télécharge la dépendance et l'inclus dans le build. C'est tellement idiomatique et facile qu'il y a certaines dépendances qui n'ajoutent qu'une petite fonction ou macro utilitaire. Voici les outils que j'ai sélectionnés:

	Ce projet utilise les options de lignes de commande : le crate indispensable pour ceci est StructOpt qui ajoute des macros procédurales permettant de récupérer les paramètres entrés en ligne de commande très facilement.

	Ensuite, j'ajoute un crate pour avoir une queue circulaire (puisque c'est la structure de données que nous avons en interne). En l’occurrence, je n'ai pas trouvé de crate satisfaisant, et donc j'ai écrit le mien (il n'est pas encore publié puisqu'il est encore en chantier, mais ça viendra ;)).

Gestion des paramètres

J'ai ajouté une nouvelle structure que j'appelle de façon originale Params. Vous verrez au-dessus la ligne suivante:

#[derive(Debug, StructOpt)]

qui permet de faire dériver notre struct des traits Debug et le fameux StructOpt. Le trait Debug devrait être implémenté sur toutes les structures de données puisqu'il permet de leur donner une représentation textuelle. Pratique pour le débug dans la console ou dans un log. Le trait StructOpt va permettre la génération du code pour la gestion des paramètres. Quand on tape ce genre de lignes, en interne une macro est invoquée qui va parser l'AST de la struct et en faire ce qu'on veut. Une macro procédurale est un générateur de code.

Du coup, je vais ajouter une donnée dans ma struct:

precision: usize,

et au-dessus, je vais donner des informations à StructOpt: le code court et long pour ajouter le paramètre (-p et --precision), la valeur par défaut, la documentation, etc. Tout est dans la doc du crate.

J'implémente ensuite un trait pour dire que notre structure a des valeurs par défaut. Je crée les données avec les infos passées en ligne de commande, et ensuite je modifie les chiffres en fonction des bornes.

Contrairement à Ada, on ne peut pas faire de type numérique borné pour le moment. Le système de type n'est pas achevé (le langage est encore jeune), mais quand ça viendra, ce type existera ! D'ici fin 2018 ça devrait être fait.

La structure App

Notre structure principale va ressembler à l'objet C++ originel. J'implémente le trait pour donner une valeur par défaut comme pour StructOpt (c'est vaguement un équivalent du constructeur par défaut en C++).

Ensuite, je suppose que je n'ai pas besoin de décrire dans le détail toutes les fonctions dans App, le nom est explicite et ça ressemble au code d'origine. Je vais juste aborder quelques spécificités du langage.

En Rust, une opération qui échoue retourne un type Result qui peut avoir deux valeurs: Ok avec l'objet attendu ou Err avec le type d'erreur qui s'est produite. Ça permet de gérer élégamment les erreurs sans mécanisme d'exceptions.

Le langage est "orienté expressions", donc on peut écrire des choses du genre :

fn must_continue(reader: &mut Lines<StdinLock>) -> Result<bool, IoError> {
 match reader.next() {
 None => Ok(false),
 Some(r) => r.map(|s| s != "q")
 }
}

Cette fonction doit se lire ainsi :

- Si on n'a pas de nouvelle ligne (l'utilisateur a tapé CTRL + D), l'opération a réussi et on ne doit pas continuer: Ok(false).

- Si on a une ligne, on prend le résultat, et avec map on transforme le Ok(String) en Ok(bool) en comparant la résultat avec "q".

La macro print_now

Comme dans la plupart des langages, la sortie standard est buffurisée et donc rien n'est affiché tant qu'il n'y a pas de retour à la ligne. Du coup, j'ai écrit une petite macro qui vide les buffers après avoir appelé print.

Ça permet de voir le fonctionnement des macros (classiques cette fois-ci, en opposition aux macros procédurales dont j'ai parlé plus haut): contrairement aux macros du C/C++, celles du Rust sont sémantiques, donc on doit faire matcher avec des choses qui ont du sens, et non pas "aveuglément". En l’occurrence, je récupère des expressions ($e:expr) ; Le ,* permet de dire qu'on veut en récupérer 0 ou plus séparées par des virgules.

La syntaxe peut sembler un peu ésotérique, mais le mécanisme est puissant et sécurisé.

Le main

Le main est simple, il va créer un objet de type App et lancer la méthode run puis vérifier le retour d'erreur.

Conclusion

J'espère que je vous ai donné envie de découvrir un peu plus ce langage qui est selon moi l'alternative la plus crédible au C. C'est un sentiment incroyable de faire un développement bas-niveau et de savoir que si le code compile, on ne tombe pas sur des erreurs non prévues au runtime (du genre segfault). Ceci permet de faire des réusinages massifs sans crainte, puisque le compilateur sait si on a fait quelque chose d'invalide au niveau de la mémoire.

En tout cas, j'ai moi-même progressé avec ce projet, et je suis parti pour publier au moins 3 crates différents. Le Rust est beaucoup basé sur le principe de l'ouverture du code (pour être publié en ligne, un crate doit être open-source) et ça fait toujours plaisir d'apporter sa pierre à l'édifice.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

