

Journal Non, l'inférence de types n'est pas du typage faible. Oui, elle rend les programmes plus lisibles

Posté par n_e le 21 novembre 2018 à 15:55.

Étiquettes :
aucune

[image:]

En lisant le journal sur la sortie de JDK 10 qui mentionnait notamment l'ajout d'une inférence de type sommaire, j'ai vu qu'il y avait une mauvaise compréhension et un fort rejet de ce concept.

Ça m'a bien surpris car je trouve au contraire l'inférence de types géniale : non seulement elle permet de bénéficier d'un langage fortement typé sans taper des types à rallonge partout, mais aussi elle rend la lecture des programmes bien plus facile (et je ne parle pas de la puissance de l'inférence de types comme implémentée dans Haskell notamment).

D'où ce court journal pour, j'espère, convaincre les réticents que c'est bien.

Non, l'inférence de type n'est pas du typage faible

Illustrons la différence par deux programmes.

Tout d'abord regardons un programme avec du typage faible :

function getTempCelsius() {
 return "12°C"
}

let fahrenheit = getTempCelcius() * 9/5 + 32

Et voilà l'équivalent avec de l'inférence de types :

function getTempCelsius() {
 return "12°C"
}

let fahrenheit = getTempCelsius() * 9/5 + 32

Beaucoup plus clair n'est-ce pas ?

En fait, un des programmes est en JavaScript (typage faible), et l'autre en TypeScript (typage largement plus fort). Dans le 1er cas, le programme ne retourne aucune erreur, que ce soit à la compilation ou à l'exécution, mais la variable fahrenheit prend la valeur NaN. Dans le 2e cas, on a un message d'erreur à la compilation qui indique qu'on tente de multiplier une chaine de caractères et un entier.

Maintenant regardons l'équivalent typé statiquement (en java) :

String getTempCelsius() {
 return "12°C"
}

int fahrenheit = getTempCelsius() * 9/5 + 32

On a tapé deux types en plus, mais on a la même erreur qu'en TypeScript, rien de plus, rien de moins.

Bref, vu de loin, un programme dans un langage utilisant l'inférence de type ressemble à celui dans un langage faiblement typé, mais en réalité on a des garanties très proches d'un langage fortement typé.

Oui, l'inférence de types rend les programmes plus lisibles

Il y a deux façons de lire les programmes :

	Sans se poser trop de questions, pour comprendre comment ça marche. Par exemple, si on lit let fahrenheit = getTempCelsius() * 9/5 + 32, on devine facilement que c'est une conversion de Celsius en Fahrenheit sans avoir besoin des informations de type. Et pourvu que le nom des variables et des fonctions ne soit pas trop mauvais, ça marche pour n'importe quel programme.

	En se posant des questions, par exemple pour déboguer un programme. Dans ce cas là on a besoin des informations de type. Par exemple, dans l'exemple de la conversion de Celsius en Fahrenheit, on peut se demander quel type retourne la fonction, est-ce que les nombres sont des entiers, quel est le type de la variable fahrenheit.

Avec un éditeur ad hoc, on peut lire les programmes de la première façon sans être pollué par des informations de type à rallonge et regarder les informations de type quand c'est utile.

Certes, avec notre exemple des degrés, avoir des types explicites ou non ne change pas grand chose à la longueur du programme et à la lisibilité, mais quand on commence à avoir des types plus longs à écrire comme Map<String, Map<String, String>>, les informations de type commencent vite à prendre plus de place que la logique du programme, surtout si on écrit des fonctions courtes comme c'est généralement recommandé.

Bref

J'ai répondu aux deux points qui m'agaçaient le plus dans les commentaires du journal sur le JDK 10, j'espère que ça vous a autant servi que ça m'a dé-aggacé :)

Avant de finir, sachez juste que les deux points de ce journal sont relativement cosmétiques et qu'utiliser un langage avec un système de types puissant est extrêmement utile et va bien au delà d'éviter de taper des types.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

