

Journal Les artistes, ce fléau ou l'invasion des profanateurs de GUI

Posté par Pierre marijon (site web personnel) le 20 mars 2014 à 11:51.
Licence CC By‑SA.

Étiquettes :

	gui

	algorithme

[image:]

Sommaire

	Exposé du problème

	
Les différents algorithmes envisagés et leurs résultats
	Distance euclidienne

	Angle et distance euclidienne

	Distance euclidienne et angle

	Angle et distance Euclidienne normalisée

	Piste non testée

	Et vous

Bonjour Nal,

Je travaille sur les menus du jeu libre Ned et les maki. Au départ, ceux-ci étaient bien organisés avec des boutons et des widgets bien alignés.

Malheureusement la rationalité et l'ergonomie n'est pas du goût des artistes de l'équipe qui développe le jeu. Déstructuration de l'espace, placement selon le nombre d'or, tentative d'éblouissement mental du joueur pour provoquer un choc cathartique ou placement au hasard "parce que c'est plus joli hihi", on m'a demandé s'il était possible d'avoir une interface avec des widgets placés librement.

Exposé du problème

Cette liberté pose un problème: comment gérer correctement la navigation au clavier ou à la manette?

En effet l'interface est basée sur un "curseur" qui permet de choisir le widget courant et que l'on peut déplacer dans quatre direction: haut, bas, gauche, droite.

Mettre ce curseur sur le widget suivant une direction est assez facile et naturel avec une interface bien rangée.

[image: http://tof.canardpc.com/view/056a79ac-5451-4726-9544-3d885a3323fa.jpg]

Avec un placement libre, je tombe sur plusieurs problèmes:

	existe-t-il un mode de déplacement "naturel"?

	s'il existe est-il régi par des règles mathématiques?

	si oui, comment les implémenter?

Les différents algorithmes envisagés et leurs résultats

J'ai fait quelques essais en essayant de choisir le widget le plus proche, le widget faisant un angle minimum suivant la direction de déplacement, un mix des deux… Mais impossible de trouver quelque chose de naturel.

À chaque fois je bute sur des cas "limites":

	Cas 1 : [image: cas limite 1]

	Cas 2 : [image: cas limite 2]

	Cas 3 : [image: cas limite 3]

	Cas 4 : [image: cas limite 4]

Pour simplifier, dans les cas exposés ici, on considère que l'utilisateur va toujours à droite (la direction ne change presque rien dans les algorithmes).

Distance euclidienne

Bon petit rappel de ce qu'est la distance euclidienne, dans un repère x, y on peut définir un triangle rectangle grâce à 2 points et à la différence entre leurs x et y ; quand on a un triangle rectangle on peut tout à fait calculer l’hypoténuse et donc la distance réelle entre les 2 points => tous les lecteurs de linuxfr le savent à priori…

[image: repère hortogonale]

Dans le cas d'un déplacement à droite

valeurRetour
dMinimale = nombreMax

Pour tous les boutons ou y > mon y :
 dEuclide = calculeDistanceEuclidienne(centreBoutonOrigin, centreBoutonAutre)
 si dEuclide < minimale :
 dMinimale = dEuclide
 valeurRetour = BoutonAutre

retourne valeurRetour

Les résultats de l'algorithme sont :

	Cas 1 : on suit le schéma.

	Cas 2 : Si les distances RV et RB sont les mêmes, c'est la loterie: ça dépend de l'ordre de création des widgets en mémoire…

	Cas 3 : le bouton B est choisi?

	Cas 4 : le bouton B est choisi.

Cet algorithme marche assez bien quand les boutons sont placés en grille avec tous la même taille et des écarts horizontal et vertical identiques.

Angle et distance euclidienne

On est toujours dans un triangle rectangle donc on peut faire un peu de trigonométrie et calculer l'angle entre la droite passant par les 2 boutons et l'horizontale.

L'algorithme est très similaire au précédent :

valeurRetour
dMinimale = nombreMax
angleMin = nombreMax

Pour tous les boutons ou y > mon y :

 dEuclide = calculeDistanceEuclidienne(centreBoutonOrigin, centreBoutonAutre)
 angle = calculeAngle(centreBoutonOrigin, centreBoutonAutre)
 si angle <= angleMin 3f09687f2a1bfe4a60ef1318710436c2702eb5e53f09687f2a1bfe4a60ef1318710436c2702eb5e5 dEuclide < dMinimale :
 dMinimale = dEuclide
 angleMin = nombreMax
 valeurRetour = BoutonAutre

retourne valeurRetour

Les résultats de l'algorithme sont :

	Cas 1 : on suit le schéma

	Cas 2 : Si les angles par rapport a l'horizontale sont les mêmes, c'est la loterie: ça dépend de l'ordre de création des widgets en mémoire…

	Cas 3 : le bouton V est choisi.

	Cas 4 : le bouton V qui est choisi.

Seul le cas 3 est problématique pour cet algorithme, en effet ce n'est pas le bouton le plus proche qui est choisi mais le plus éloigné. Cet algorithme fonctionne assez bien sauf si on a un groupe de boutons non alignés et un bouton éloigné mais aligné avec l'un des boutons du groupe.

Distance euclidienne et angle

On peut aussi choisir de prioriser la distance euclidien par rapport a l'angle c'est juste une inversion des tests

- si angle <= angleMin \&\& dEuclide < dMinimale :
+ dEuclide <= dMinimale \&\& si angle < angleMin :

Les résultats sont les mêmes que pour l'algorithme utilisant la distance d’Euclide.

Angle et distance Euclidienne normalisée

On garde toujours les même mesures sauf qu'on les normalise, en les divisant par leur valeur maximale :

* Pour la distance euclidienne $$\sqrt{maxX{2} + maxY{2}}$$

* Pour l'angle 360 degrés ou pi/2 radiant

On a donc deux valeurs qui sont comprises entre]0, 1]. Si on en fait la somme, on est entre]0, 2]. Il ne reste plus qu'a comparer ces valeurs:

valeurRetour
nomaMax = 2

Pour tous les bouton ou y > mon y :
 dEuclide = calculeDistanceEuclidienneNormalise(centreBoutonOrigin, centreBoutonAutre)
 angle = calculeNormalise(centreBoutonOrigin, centreBoutonAutre)
 si (angle + dEuclide) < normaMax :
 normaMax = angle + dEuclide
 valeurRetour = BoutonAutre

retourne valeurRetour

Les résultats de l'algorithme sont :

	Cas 1 : on suit le schéma.

	Cas 2 : Si les angles par rapport a l'horizontale sont les mêmes et que les distances sont les mêmes, c'est la loterie: ça dépend de l'ordre de création des widgets en mémoire…

	Cas 3 : le bouton B est choisi.

	Cas 4 : ça dépend vraiment des valeurs exactes, une petite variation de la distance ou de l'angle de B peut faire changer le choix du bouton.

C'est le meilleur des algorithmes que j'ai testé mais il présente un faiblesse importante, le choix peut changer pour de très petites variations de position.

Piste non testée

J'ai eu d'autres idées en écrivant ce journal et je n'ai pas pris le temps de les tester:

	Déterminer un angle maximal au delà duquel le bouton n'est pas pris en compte, mais on est toujours sensible au variations et comment déterminer cette angle ?

	Une pondération de la distance par l'angle normalisé ? Peut-être une bonne idée.

	Pondéré de manière arbitraire l'angle normalisé et la distance normalisé ? Comment déterminer les bons poids ?

	Utiliser la distance entre le bord du bouton droit (quand c'est à droite que l'utilisateur veut aller), et le bord de gauche des boutons, oui mais on prend quel point du bord, le centre, les 2 points les plus proches (pas forcement très rapide à trouver) ?

Et vous

Nal, sauras-tu m'aider à trouver une solution? (Pas comme devnewton< dont la solution se limite à "on s'en fout de ces connards d'artistes de merde")

Est-ce que vous avez d'autres algorithmes à proposer, ou d'autres cas limites pour tester les algorithmes.

Merci pour ton aide Nal.

(Les casus qui ont pensé "ouais mais avec un écran tactile, pas besoin de curseur" en lisant ce journal peuvent aller jouer à Candy Crush sur l'autoroute, merci).

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/447ae44d302ea702071a60cc102a01e868f0fe8bb01198e11495274f.jpg
Iy
> @D >
4

o
@y >
@

_
—

(

EPUB/fa544f1b9e411acda490efbbadea5198b146d65db612399f936929bb.jpg

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/716dc7964b237df8687ed397febabdc4b9e456838304d9144ec12b30.jpg

EPUB/81d4120ea25eca4f21fb2c06fa1c3a27c6e3313613bf40bd8f014cab.jpg
C —
o o B C)

EPUB/1e72a61071953cb640b68306ea6942eb62fd5243286a11638f1c628f.jpg

EPUB/avatars243056000avatar.jpeg

