

Journal “indexer, choisir et copier des fichiers” version Beta

Posté par Nicolas Boulay (site web personnel) le 25 novembre 2013 à 23:33.
Licence CC By‑SA.

Étiquettes :
aucune

[image:]

Sommaire

	“Mais pourquoi”

	Comment ?

	Finalement

	Technique

	Format de fichier durable

	Vie privée

	Malware ?

	Premier tests

	Exemple (“console shot“ sous Linux)

	Performance

	Découvertes

	Fonctionnalités en plus

	Effets secondaires

	Bug connu

	Beta

“index” vient de sortir en version Beta. Il s’agit d’un logiciel pour faciliter le choix, et la copie parmi un grand nombre de fichier, sur un grand nombre de supports différents.

“Mais pourquoi”

Le problème s’est posé, quand des personnes voulaient partager des fichiers. Souvent, un seul disque amovible ne permet pas de récupérer tous les fichiers disponibles.

Il faut donc faire un choix.

Le besoin est un outil, qui créé une base de donnée de fichiers. Cette base est distribuée aux amis. L’outil permet de choisir des fichiers, et de calculer la place totale nécessaire à la copie. Cette liste de choix est donné, pour effectuer le transfert.

Les amis n’étant pas tous parfait, une version Windows est nécessaire. Avoir une GUI semble trop compliquée, autant commencer par un outil en ligne de commande (CLI). Mais un outil CLI pour des windosiens, cela ne va pas être possible.

Comment ?

Il fallait un outil simple, plus il serait simple, plus il serait utilisable, et utilisé (et facile à tester). Un éclair de lucidité a permis de se rendre compte, que la phase importante de choix, ressemblait beaucoup à l’utilisation d’un navigateur de fichier. Il faut pouvoir utiliser celui de l’OS.

Pour cela, chaque fichier serait représenté par un fichier plus petit (sinon cela ne sert à rien), contenant une référence vers le fichier d’origine : les fichiers d’index.

La norme universelle, qui définit une référence vers un fichier, semble être le lien “magnet” (http://fr.wikipedia.org/wiki/Magnet_%28standard%29). Cela permettrait d’inclure un hash du fichier, qui peut aussi servir pour les système comme bittorrent, en plus d’un path. Cela permettrait de faire la liaison avec Internet.

Dans un premier temps, seul le path complet est utile pour la copie. La lecture d’un lien “magnet” ne semble pas simple, il existe des ambiguïtés dans la norme (encore une histoire de mélange de data et de contrôle dans le même flux, de mémoire). De plus, générer un hash pour plusieurs Go de fichier, prendrait des heures. Exit le lien magnet, et vive la simplicité : un path par ligne (avec un éventuel ‘\n’ encodé).

L’outil a 3 tâches à effectuer, cela veut dire des binaires différents, ou un jeu d’option. Or on peut lancer un binaire sous Windows, par un double clic dans le navigateur de fichier. Cela lance une console, qui se referme aussitôt. Pour en lire le contenu, il faut lancer un script “.bat”, qui contient une commande “pause”, après la commande “index”. La console reste ouverte, et attend l’appuie sur une touche.

Un moyen d’avoir une GUI sous Windows existe, si l’outil se contente d’un double clic sur un exécutable. Plus tard, on peut imaginer inclure l’outil dans le menu du clic droit, ou dans ultracopier. On ne peut pas avoir plus simple. Ou presque.

Finalement

On peut faire en sorte que toutes les tâches s'enchaînent : en créant la liste d’index dans un répertoire spécifique, puis en cherchant des fichiers d’index autour, qui sont remplacés par le fichier d’origine. Si les fichiers d’origines ne sont pas trouvés, on cumule les tailles pour avoir une idée de la place nécessaire. Et on évite la bêtise d’indexer les fichiers d’index.

Au premier lancement, seul la liste est créée. Celle-ci est à donner aux amis. Ils copies/collent les fichiers indexes, en dehors du répertoire “liste” pour faire leur choix. Un (2ième) lancement du logiciel donne la taille totale nécessaire. Ce choix de fichiers est donné à leur propriétaire. Un 3ième lancement du logiciel lancera les transferts.

L’installation du logiciel à la racine du répertoire à indexer, est nécessaire sous Windows, pour savoir qu’il faut indexer le répertoire courant (si on veut éviter la ligne de commande). Sous Linux, les options de montages peuvent interdire l’exécution de programme depuis un disque externe. Pas de bol. Il faudra fournir le path de la base de fichier à indexer, en option. Et copier l'exécutable ailleurs. Ou attendre l’intégration dans les distributions.

Technique

Concernant le langage de programmation, OCaml permet de faire rapidement un outil sans bug stupide. Je n’avais pas envie de passer mon temps à faire des tests, pour comprendre les exceptions runtime. OCaml attrape ce genre de problème à la compilation.

OCaml permet de créer, et de traiter des arbres de données de façon très simple. Une manière d’éviter les bug, est d’avoir une structure de données qui correspond exactement au besoin de l’étape de traitement suivante. Ainsi, une structure incomplète ou fausse ne compile pas. Se “traîner le monde” dans une structure gigantesque est très tentant, mais on s’y perd bien trop facilement : Si on la modifie, à quel moment, telle valeur est à jour ? 2 valeurs se ressemblent beaucoup, laquelle est la bonne ?

Les étapes de transformations intermédiaires sont plus simples, car les données sont plus petites. Traiter 2 arbres en même temps peut être pénible pour le cerveau (très très pénible).

Le code est peut être un peu plus lent, car plus de données sont explicitement créées. Mais les arbres suivants sont souvent plus petits (meilleur localité de cache), et donc plus rapide à traverser, ce qui augmente la vitesse du code avale.

Et dans mon cas, ce sont les appels systèmes qui sont lent.

Format de fichier durable

Un format de fichier est une chose à ne pas rater, gérer les évolutions et la rétro compatibilité pouvant être “pénible”. Dans un protocole de communication CCSDS, un nombre magique était utilisé, le champs suivant était une taille de paquet qui permettait de trouver son CRC.

Le problème est d’identifier le paquet entier, et non un bout de paquet légitime quelconque. Un nombre de n bit a une probabilité d’apparition de 1/2n multiplié par la taille des données, ce qui rend la probabilité de collision de plus en plus faible avec n, surtout si il y a un CRC à vérifier ensuite.

Un fichier a un début, cela facilite beaucoup de chose. Le hash prend du temps. Le problème est également de définitivement faire la différence entre une donnée, et les métadonnées. XML gère cela parfaitement, mais c’est un peu l’arme atomique, ses radiations sont nocives.

Le concept est d’utiliser des couches pour offrir des garanties “définitives”. Par exemple, une string avec n’importe quel caractère doit pouvoir être écrit et relu sans souci (même avec ‘<’ ‘\n’, ‘&’ ‘?’,…). Le choix a été fait de mettre une donné par ligne, c’est réellement humainement lisible. En cas de ‘\n’ dans la donné, elle est encodé en ‘#n’, et ‘#’ en ‘##’. De plus, c’est assez rare dans un path.

Un code fixe permet d’identifier le type de fichier, et un numéro de version permet de gérer une future évolution.

Vie privée

Les fichiers contiennent des paths entiers. Les utilisateurs doivent faire attention de ne pas laisser filer d’information par cet intermédiaire. Les fichiers ne sont pas compressés individuellement pour pouvoir lire facilement ce qui est exporté.

Malware ?

Le logiciel se distribue lui-même, car il est présent sur les supports mobiles pour faciliter l’usage sous Windows. Il y a donc un problème potentiel de virus ou de malware.

Pour éviter cela, il n’existe pas beaucoup de solution. Celle en béton implique une signature cryptographique des exécutables, mais cela implique donc de gérer une clef, dont la perte serait plus que gênante.

La distribution du hash SHA des binaires permet de limiter les problèmes, pour une même version de l’outil, le hash doit être le même partout. Bien sûr, il ne faut pas qu’il y est trop de version en circulation, cela diminuerait la possibilité de vérification croisée.

Avec une diffusion “officielle” publique sur le web, c’est encore plus simple.

Premier tests

Index a bénéficié des techniques de développement de l'aéronautique. Enfin, d’une.

Une option (cachée) permet de faire un ‘dump’ des structures de données internes. C’est ainsi plus simple de détecter les étapes ayant une erreur, et de faire de la non régression avec des diff de fichier. Oui, cela ressemble à du debug avec printf(), sauf que les printf() restent dans le binaire finale, et ils sont écrit une fois pour toute. C’est le top de la faignantise de codeur. En plus, cela colle bien avec l’idée d’avoir des séries d’arbres “minimaux”.

Exemple (“console shot“ sous Linux)

La page d’aide s’ouvre avec ‘-h’:

[alice@localhost CORSAIR16GB]$ index -h
index V0.4.48
usage : index [--lowmem] [root path]
‘/media/CORSAIR16GB' file directory are read.
Index file listing 'list/' are created or updated.
Index file not present in the 'list/' directory are replaced by the file they point to if possible.
The size of none replaced index file are printed.
The indexes should be copied, with this executable.

Indexation des fichiers :

[alice@localhost CORSAIR16GB]$ index
index V0.4.48
The base directory is '/media/CORSAIR16GB'.
The directory '/media/CORSAIR16GB/list' will be the index directory.
81 files have been scanned.
81 new index have been created in the index directory.
0 have been updated.
81 files are in base directory.
0 files to be copied in the base directory :
0 files have been effectively copied.
There is 0 byte (0.00 MiB) of 0 unreplaced .idx file(s) by the original.
Elapsed time : 0.05 s, since the begining.
[alice@localhost CORSAIR16GB]$ cd ../S8GB
[alice@localhost S8GB]$ index
index V0.4.48
The base directory is '/media/S8GB'.
The directory '/media/S8GB/list' will be the index directory.
61 files have been scanned.
61 new index have been created in the index directory.
0 have been updated.
61 files are in base directory.
0 files to be copied in the base directory :
0 files have been effectively copied.
There is 0 byte (0.00 MiB) of 0 unreplaced .idx file(s) by the original.
Elapsed time : 0.04 s, since the begining.
[alice@localhost S8GB]$ cp -rp list/* ~/index_list/S8GB/
[alice@localhost S8GB]$ cp -rp ../CORSAIR16GB/list/* ~/index_list/CORSAIR16GB/
[alice@localhost S8GB]$ cp -rp ~/index_list ../HPW4/list/

La clef usb HPW4 est ensuite donné à Bob, la liste est récupérée sur un disque mobile.

[bob@desktop HPW4]$ cp -rp ./list/* ../WD2T/list/; cd ../WD2T/

Bob choisit les fichiers. 2 ici. Il vérifie la taille nécessaire à leur future copie.

[bob@desktop WD2T]$ cp list/index_list/fichier1.idx .
[bob@desktop WD2T]$ cp list/index_list/fichier2.idx .
[bob@desktop WD2T]$ index
index V0.4.48
The base directory is '/media/WD2T'.
The directory '/media/WD2T/list' will be the index directory.
143 files have been scanned.
0 new index have been created in the index directory.
0 have been updated.
2 files are in base directory.
2 files to be copied in the base directory :
File not found fichier1 64419
File not found fichier2 64419
0 files have been effectively copied.
There is 128838 byte (0.12 MiB) of 2 unreplaced .idx file(s) by the original.
Elapsed time : 0.00 s, since the begining.

Bob rend la clef usb HPW4, et son disque dur WD2T à Alice. Alice branche WD2T, S8GB et CORSAIR16GB sur son ordinateur.

[alice@localhost WD2T]$ index
index V0.4.48
The base directory is '/media/WD2T'.
The directory '/media/WD2T/list' will be the index directory.
143 files have been scanned.
0 new index have been created in the index directory.
0 have been updated.
2 files are in base directory.
2 files to be copied in the base directory :
filer1_1_1_1_1.jpg
filer1_1_1_1_2.jpg
2 files have been effectively copied.
There is 0 byte (0.00 MiB) of 0 unreplaced .idx file(s) by the original.
Elapsed time : 0.01 s, since the begining.

Les 2 fichiers ont été copié. Un nouveau lancement montre qu’il n’y a plus rien à faire.

[alice@localhost WD2T]$ index
index V0.4.48
The base directory is '/media/WD2T'.
The directory '/media/WD2T/list' will be the index directory.
145 files have been scanned.
0 new index have been created in the index directory.
0 have been updated.
2 files are in base directory.
0 files to be copied in the base directory :
0 files have been effectively copied.
There is 0 byte (0.00 MiB) of 0 unreplaced .idx file(s) by the original.
Elapsed time : 0.00 s, since the begining.

Alice peut rendre son disque WD2T à Bob contenant les fichiers.

Performance

Les première versions de l’outil était lent. Les fichiers d’index portaient exactement le même nom, que les fichiers d’origines. Pour les reconnaître, il fallait lire leur entête. Indexer 30 000 fichiers impliquait de les ouvrir tous, pour vérifier si il s’agissait d’index à remplacer. Ouvrir un fichier est trop long. Rajouter l’extension .idx, permet de n’avoir à ouvrir que les fichiers ayant cette extension. C’est beaucoup plus rapide.

Ocaml ne permet pas vraiment de réutiliser la mémoire pour parser un fichier (sauf si on réécrit les fonction de parsing en utilisant le type buffer). Il y a obligation de passer par une string, qui est difficilement réutilisable. 30 000 fois quelques Ko, cela peut faire beaucoup. Jouer avec le garbage collector, permet de réduire son nombre d’appel, cela va plus vite, mais cela consomme beaucoup plus de mémoire (15% plus rapide, 8x plus de mémoire, mais 300 Mo, cela va encore).

Une chose intéressante : un flush() de stdout pour afficher (trop souvent, à chaque bloc de 15 Mo, soit ~10x par seconde pour 100 Mo/s), l’évolution de la taille du fichier copié, pouvait faire perdre jusqu’à 20% de vitesse de copie sur un SSD. La mise à jour a donc lieu moins souvent.

Au final, indexer 30000 fichiers prend quelques secondes sur un SSD, mais avec un cpu Atom. La taille des fichiers n’importe pas. Avec un disque USB, c’est l’USB, qui est un peu limitant.

Découvertes

http://semver.org/ décrit une manière de faire des numéro de version x.y.z. ‘Z’ est un numéro de patch, ‘y’ rajoute des fonctionnalités, mais reste compatible, ‘x’ est un incrément majeur qui indique une absence de retrocompatibilité. Le système de build de ‘index’ incrémente automatiquement ‘z’, cela va sans doute un peu trop vite, mais cela évite les oublie. Les versions windows et linux n’ont pas exactement la même version, pour cette raison.

Indexer la racine d’un disque mobile sous Windows amène à indexer le répertoire $RECYCLE.BIN, qui est la corbeille, après quelques essais, celle-ci est pleine de fichiers .idx qui sont remplacés par le fichier d’origine ! ‘index’ ne parcourt donc plus ce répertoire.

Fonctionnalités en plus

Le path sous Linux utilise le nom de volume du disque mobile. Windows prend la première lettre disponible. Si on branche plusieurs disques, la lettre change. Index recherche donc à retrouver le bon disque pour les transferts, cela permet de cumuler les disques, même dans le désordre. Cela marche beaucoup moins lentement, que je l’aurais pensé.

En cas d’interruption et de relance, la copie est continué et non écrasé.

Effets secondaires

Comme l’identification du fichier est son path, son nom, et non son contenu (comme avec un hash), celui-ci peut changer. Seul la taille sera fausse. Cela peut être utile pour faire des transferts récurrents, ou un outil de sauvegarde simple.

Le programme permet aussi de gérer le contenu de plusieurs disques de façon plus simple, qu’avec des déplacements de fichiers. On gère un ensemble de fichier et non un fichier à la fois. Cela aide pour les re-répartir.

Bug connu

Il y a un bug sous Windows XP, quand un fichier n’est pas trouvé pour une copie, une erreur est remontée, au lieu de simplement cumuler la taille des fichiers. Je n’ai pas encore d’XP sous la main, pour le reproduire.

Beta

Maintenant, le plus dur reste à faire, pour que cet outil ai une utilité : avoir des utilisateurs.

J’attends vos retours !

github https://github.com/nicolasboulay/index/

manuel https://github.com/nicolasboulay/index/blob/master/README.txt

installation https://github.com/nicolasboulay/index/releases/tag/V0.4.52

package https://github.com/nicolasboulay/index/releases/download/V0.4.52/index.tar.gz

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars602001000avatar.png

