

Journal Qu'est-ce que bien gérer les erreurs dans ses programmes ?

Posté par Nicolas Boulay (site web personnel) le 14 décembre 2007 à 15:41.

Étiquettes :
aucune

[image:]

La question métaphysique du jour : comment bien gérer les erreurs ?

Il y a déjà plusieurs types d'erreurs: celles qui relèvent de la mauvaise utilisation de code, elle pourrait se traiter avec des assert(), il y a celle qui remonte un mauvais fonctionnement à l'étage du dessus, et celle entre les deux, qui peuvent servir parfois à effectuer des "scans" de fonctionnalités (genre on charge tous les noyau réseau un par un pour trouver le bon driver de sa carte).

Les problèmes surviennent lorsque du code qui devrait retourner un assert() et donc crasher en cas d'erreur font un simple "return error"; et qui a le malheur de faire une exécution partielle du code. En général, 2 ou 3 appels de fonctions différentes de la lib en question plus tard, tout va se viander aléatoirement.

Donc, il faut déjà prévoir quoi faire en cas d'erreurs au plus bas niveau et ne remonter qu'en cas d'impossibilité de gérer le problème à ce niveau et encore, en le faisant proprement (par exemple, un retour de malloc à 0 ?).

Proprement, cela veut dire peut-être de séparer fonction de test de validité des paramètres, et exécution proprement dite de la fonction, cela permet d'éviter les exécutions partielles (imaginez une fonction de lib qui retourne une erreur en s'étant exécuter à moitie dans un cas qui n'entraine pas une erreur fatal de l'ensemble).

Souvent dans les exemples d'utilisation, la gestion des erreurs est mise de coté pour éviter d'alourdir un exemple. Cela démontre déjà que la gestion d'erreur à tendance à brouiller l'algorithme de base. Je trouve que cela renforce le principe de base de bien séparer exécution et traitement d'erreur.

Il y a maintenant les gestions d'exception pour faire cela. Je n'ai jamais vraiment coder avec, mais je n'ai jamais non plus vu un véritable enthousiasme pour ce système.

J'aurais tendance à éviter toute gestion d'erreurs qui entraîne un crash. Aucun utilisateur n'aime voir un crash, surtout dans l'embarqué. Cela me rappelle une certaine central inertielle qui partait en autotest sur une exception Ada. J'aurais tendance à interdire formellement tout code qui interrompt la fonctionnalité.

Connaissez vous des règles génériques pour déterminer la conduite à tenir en cas de retour d'erreur ?

Qu'est-ce que vous conseillez donc pour faire propre ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars602001000avatar.png

