

Journal Comprendre Go en 5 minutes, en Haskell

Posté par nokomprendo (site web personnel) le 24 décembre 2019 à 12:37.
Licence CC By‑SA.

Étiquettes :

	haskell

	golang

[image:]

D'après leur réputation, Go et Haskell sont des langages de programmation assez opposés : Go privilégie la simplicité, Haskell l'expressivité. Cependant ces deux langages ne sont pas si éloignés que cela. Plus exactement, les concepts de base de Go se retrouvent, de façon assez ressemblante, en Haskell.

Ce journal reprend, en Haskell, les exemples de code en Go de l'article Comprendre Go en 5 minutes. L'objectif n'est pas de présenter exhaustivement Go ou Haskell, ni de démontrer que l'un est "meilleur" que l'autre mais plutôt de montrer l'équivalent en Haskell de quelques fonctionnalités de Go.

Avertissement : je ne connais rien à Go et ne suis pas un expert en Haskell. Les exemples ci-dessous présentent juste ce que j'en ai compris.

Hello world

Commençons par le traditionnel "helloworld". En Go, il faut définir un package, importer le module fmt et définir une fonction main.

package main

import "fmt"

func main() {
 fmt.Println("hello world")
}

En Haskell, il faut également définir une fonction main mais il n'est pas nécessaire de définir un module ni d'importer de module particulier.

main :: IO ()
main = putStrLn "hello world"

Fonctions

En Go, la définition et l'évaluation de fonction ressemble à n'importe quel langage de type "langage C".

package main

import "fmt"

func add(x int, y int) int { // définit une fonction add
 return x + y
}

func main() {
 var i, j int = 10, 2
 fmt.Println(add(i, j)) // évalue add
}

En Haskell, on utilise la forme curryfiée et sans parenthèse d'évaluation.

add :: Int -> Int -> Int -- définit une fonction add
add x y = x + y

main :: IO ()
main = do
 let i = 10
 j = 2
 print (add i j) -- évalue add

Interfaces

Go permet de définir des types et des interfaces. Par exemple, on peut définir un type GoDeveloper implémentant une interface Developer.

package main

import "fmt"

type Developer interface { // définit une interface Developer
 Code() string
}

type GoDeveloper struct { // définit un type GoDeveloper
}

func (g GoDeveloper) Code() string { // implémente Developer pour GoDeveloper
 return "Go code"
}

func main() {
 goDeveloper := GoDeveloper{}
 fmt.Println(goDeveloper.Code())
}

Le système de type de Haskell est très évolué mais les classes de types et les types algébriques permettent d'écrire un code équivalent au code Go précédent.

class Developer a where -- définit une "interface" Developer
 code :: a -> String

data GoDeveloper = GoDeveloper -- définit un type GoDeveloper

instance Developer GoDeveloper where -- implémente Developer pour GoDeveloper
 code g = "go code"

main :: IO ()
main = do
 let goDeveloper = GoDeveloper
 putStrLn (code goDeveloper)

Processus légers

Enfin, Go propose des processus légers, appelés "go routines" et lancés via le mot-clé go.

package main

import (
 "fmt"
 "time"
)

func say(s string) {
 for i := 0; i < 5; i++ {
 time.Sleep(100 * time.Millisecond)
 fmt.Println(s)
 }
}

func main() {
 go say("world") // lance un processus léger, en parallèle
 say("hello")
}

Haskell possède également des processus légers, lancés via forkIO.

import Control.Concurrent
import Control.Monad
import System.Clock

say :: String -> IO ()
say s = forM_ [1 .. 5] $ _ -> do
 threadDelay 100000
 putStrLn s

main :: IO ()
main = do
 forkIO (say "world") -- lance un processus léger, en parallèle
 say "hello"

Conclusion

Le langage Go permet de définir et d'utiliser des fonctions, des types, des interfaces et des processus légers (appelés "go routines"). Ces fonctionnalités existent également en Haskell et s'utilisent de façon assez ressemblante.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

