

Journal Pourquoi Git m'importe ?


Posté par Bruno Michel (site web personnel) le 16 mars 2008 à 00:43.

Étiquettes :
aucune









[image: ]





	Dans mon précédent journal,


j'ai clairement indiqué ma préférence sur les gestionnaires de versions


distribués (comme Git), par rapport aux


gestionnaires de versions centralisés (comme


Subversion). Je n'avais alors pas


justifié ma position, mais je souhaite maintenant le faire. C'est vrai ca,


pourquoi Git* m'importe ?






Un des arguments souvent rencontrés pour justifier l'intérêt de Git est la


vitesse des opérations. C'est vrai que c'est agréable de pouvoir commiter


instantanément. Pourtant, je travaille régulièrement avec svn, et ce manque de


rapidité n'est pas quelque chose qui me gêne beaucoup. Cet argument à lui seul


ne suffit pas à justifier le passage de svn à Git.






Les gestionnaires de versions distribués permettent, par définition, de


commiter depuis n'importe où (dans le train, le métro, l'avion, les toilettes,


etc.). Pourtant, ce genre d'utilisations reste assez marginal, et à l'exception


de quelques personnes, c'est une possibilité extrêmement peu utilisée.






On peut également reprocher certaines choses à svn (comme l'impossibilité


d'annuler un commit), mais ce sont des choix de design de subversion, et un


autre gestionnaire centralisé pourrait les corriger.






Pour ma part, je pense que le plus grand apport de git est son aspect


distribué, ce qui permet de mettre entre toutes les mains un gestionnaire de


versions avec ses avantages. Avec subversion, seules les personnes autorisées


peuvent accéder au dépôt et créer des branches pour faire des essais. De


l'autre coté, n'importe qui peut cloner un dépôt Git, créer sa branche


expérimentale et continuer à suivre les développements fait sur le dépôt


officiel.






Prenons un exemple (fictif) : je suis un utilisateur régulier du logiciel XYZ,


j'en suis content, mais je n'arrive jamais à m'y retrouver dans l'écran des


options. Je décide donc d'essayer de refaire cet écran, mais comme je passe


beaucoup de temps sur la tribune, il va probablement me falloir plusieurs


semaines avant de pouvoir proposer un patch à l'auteur.






Premier cas : le logiciel XYZ est versionné avec subversion. Je fais donc un


checkout du trunk, et je commence à travailler dessus. Au bout de deux


semaines, je commence à avoir une version intéressante de cet écran, mais entre


temps, le développement a continué sur le trunk, et une nouvelle option est


apparue. Je décide de faire un svn up, mais malheureusement, l'inévitable se


produit : un conflit sur plusieurs fichiers. Ce n'est pas très grave, j'arrive


à les corriger, et je peux me remettre au travail. J'arrive enfin à un écran


des options qui me convient, et juste au moment où j'allais me décider à


envoyer mon patch à l'auteur, je me dis que j'essayerais bien d'intervertir 2


options. Je fais ce dernier changement, mais pas le temps de le tester, je pars


en vacances. A mon retour, je me rends compte qu'intervertir ces 2 options


était une mauvaise idée. Malheureusement, comme je n'ai pas pu commité mes


changements, je me retrouve à devoir me rappeler ce que j'avais fait avant de


partir pour pouvoir annuler ces changements. Enfin, je peux proposer mon patch


à l'auteur. Ouf.






Deuxième cas : je fais un svn export du même dépôt, puis je créé un dépôt svn


local pour gérer mes avancées. Je peux tranquillement travailler sur mon écran


d'options. Quand j'arrive à quelque chose de convaincant, je propose un patch à


l'auteur, qui le refuse, car celui-ci ne s'applique pas sur le trunk. J'essaye


alors de me synchroniser avec le dépôt officiel, mais entre les nombreux


conflits et le trunk qui n'arrête pas d'évoluer, je finis par abandonner :(






Maintenant, le même scénario avec Git se serait beaucoup mieux passé. J'aurais


profité de tous les avantages d'un code versionné. Par exemple, j'aurais pu


commiter régulièrement mes avancées, ce qui m'aurais permis de profiter de git


diff, git log, etc. Si, après récupéré les mises à jour du dépôt officiel, je


me serais rendu compte que résoudre les conflits est plus compliqué que prévu,


je peux retourner à la révision précédente et continuer à travailler dessus (en


laissant le travail de résolution des conflits pour quand j'aurais plus de


temps/volonté à y consacrer). Enfin, je n'aurais rencontré aucune difficulté à


annuler un des mes changements. Bref, j'aurais pu profité des avantages d'un


code versionné.






Ici, on peut assez facilement s'en sortir avec svn et quelques bidouillages


(faire régulièrement des tarballs de ses avancées), mais imaginer que vous


vouliez vous mettre à plusieurs pour proposer une nouvelle fonctionnalité


majeure pour votre logiciel préféré. Bien entendu, vous n'avez pas accès au


dépôt officiel, sinon ce serait trop simple ;)






Pour moi, la grande force des gestionnaires de versions distribués est là :


pouvoir créer une branche même sans accès au dépôt officiel. Cette branche


distante est la seule façon sereine de faire des développements expérimentaux


tout en continuant à se synchroniser sur la base de code officielle. Les


gestionnaires de versions distribués cassent cette barrière entre ceux qui ont


accès au dépot officiel et les autres.












* je parle de Git, mais Mercurial ou Bazaar-NG ou un autre DSCM ferait aussi l'affaire.




EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/avatars532022000avatar.png





