

Journal Mettre ses parties en ligne !

Posté par Renaud Guezennec (site web personnel) le 17 avril 2017 à 18:09.
Licence CC By‑SA.

Étiquettes :

	python

	rolisteam

	jdr

	script

	audacity

	vidéo

	son

[image:]

Sommaire

	
Cher journal
	Contexte:

	
Le choix des outils:
	SimpleScreenRecorder (SSR)

	Teamspeak:

	Les fruits de l’enregistrement

	Améliorer l’expérience visuelle

	Caler le son et l’image

	Une étape d’accomplie

	Montage des génériques

	Extraction du son et traitement

	
Traitement sur la vidéo
	Normalisation

	Supprimer les moments inutiles

	
Aller encore plus loin
	Si vous voulez voir le résultat:

Cher journal

Je suis venu te conter une histoire. Cette histoire est issue d'un désir coupable de frimer un peu.

Non, je n'ai pas réussi à faire quelque chose d'exceptionnel ou d'impossible comme inventer une ampoule qui dure 10 fois plus longtemps que toutes les autres.

Je souhaite juste montrer comment GNU/Linux, le système D et la philosophie OpenSource/libre/DIY peuvent permettre d'automatiser un processus de production vidéo.

Contexte:

Je suis développeur de Rolisteam. J'avais besoin de faire un peu la promotion du logiciel. De plus, en tant que maître de jeu, j'avais envie de garder une trace de ma campagne, histoire

d'en faire profiter d'autres gens.

L'enregistrement des parties en vidéo et audio nous a semblé la meilleure solution pour atteindre ces objectifs.

Le choix des outils:

Après une phase de recherche, mon choix s’est porté sur:

SimpleScreenRecorder (SSR)

Il est pratique, simple et la qualité vidéo est plutôt bonne. Le seul problème c'est l'enregistrement audio. Impossible d'enregistrer en même temps mon micro et

les voix de mes camarades à moins de configurer pulseaudio ou l'usage de Jack. Je n'avais pas envie de changer toute la configuration son de ma bécane. C’est peut-être facile à faire mais j’avais pas envie de me lancer la dedans. De plus, la qualité audio de SSR est moins bonne que Teamspeak (je trouve en tout cas).

Teamspeak:

Ok, ce n'est pas libre mais pour des raisons de qualité et d'habitude des joueurs, on est resté sur cette solution pour l'audio.

Les fruits de l’enregistrement

Grâce à ces outils, j'ai réalisé les enregistrements.

J'avais donc un fichier son et une vidéo par partie. Dans un premier temps, j'ai fusionné les deux fichiers avec ffmpeg pour obtenir la vidéo de la partie (avec le son).

ffmpeg -i video.mp4 -i audio.wav -c:v copy -c:a aac -strict experimental output.mp4

Améliorer l’expérience visuelle

Souhaitant offrir une meilleure expérience pour les éventuels spectateurs, j'ai codé un plugin à teamspeak qui envoie sur dbus le statut de la voix de chaque joueur.

J'ai crée une application qui écoute ces messages dbus, quand le joueur parle, le portrait de son personnage s'affiche en couleur. Quand il est silencieux le portrait du personnage s'affiche en niveau de gris. Il m'a fallu plusieurs tests et étapes pour arriver à ce fonctionnel final.

Les joueurs ne voulant pas montrer leur visage par webcam. Cela semblait la meilleur solution de suivre facilement les conversations.

Vous trouverez le code ici: https://github.com/obiwankennedy/GameVisulisationHelper/tree/cops/display

Cette application a apporté une contrainte supplémentaire sur les vidéos. Le son et l'image doivent être synchronisés avec précision. Ce n’était pas le cas avant car les éléments de l’écran pouvait être en avance ou en retard par rapport à la voix, il n’y avait aucun repère visuel pour le remarquer.

Caler le son et l’image

J'ai d'abord pensé merger les deux fichiers dans un éditeur vidéo.

J'ai essayé PitiVi, OpenShot et Kdenlive. Les deux premiers agonisent dans d'atroces souffrances après le chargement de fichiers supérieurs à 3h. Kdenlive s'en sort mieux. Il n'agonise qu'une fois sur deux. J’ai installé les versions de ma distribution et j’ai fait de report de bug mais je pouvais pas attendre la résolution des problèmes.

Dans ce contexte, trouver le bon timing pour synchroniser l'audio sur l'image, c'est compliqué. Le drag and drop de fichier de 3h fait assez mal aux logiciels d'édition vidéo. Sans parler de la précision pour les déplacements. Bref, pas pratique.

Je me suis dit "c'est idiot, il faudrait synchroniser le début de l'enregistrement de l'audio et la vidéo".

Je n'ai pas le code source de Teamspeak mais il est possible de créer un plugin (ou de modifier celui que j'ai créé) et j'ai le code source de SimpleScreenRecorder (SSR).

J'ai donc décidé d'exposer l'API de SSR sur DBUS et mon plugin teamspeak envoie des commandes dbus. Vive Dbus !

En gros, j'ai étudié le code de SSR pour identifier la fonction qui démarre l'enregistrement. J'ai créé la petite tambouille pour l'exposer (ainsi que la fonction pour mettre l'enregistrement en pause) sur dbus.

Si vous voulez voir comment faire cela: http://renaudguezennec.eu/index.php/2011/03/10/introduction-a-dbus-avec-qt4/

Pour le coup, après quelques essais et des modifications sur l'ensemble des participants à l'affaire. J'ai une solution qui tourne bien. Je peux utiliser ffmpeg pour fusionner mes fichiers vidéos avec le son et cela correspond parfaitement.

ffmpeg -i video.mp4 -i audio.wav -c:v copy -c:a aac -strict experimental output.mp4

Une étape d’accomplie

J'ai fait un pull request à l’auteur de SSR. Mon but était de montrer comment faire car l'auteur de SSR n'est pas formé à Dbus. Il est très intéressé mais clairement je n’ai pas le temps de généraliser l’usage de Dbus dans SSR, ni lui d’ailleurs.

Ma version est accessible ici : https://github.com/obiwankennedy/ssr

Ma pull request : https://github.com/MaartenBaert/ssr/pull/399

Montage des génériques

Après ces étapes, j'ai des vidéos de mes parties assez brutes. Idéalement, il me reste à ajouter un générique de début et de fin.

Pour le faire, j'ai fait un programme en QML avec deux animations qui se courent après. C'est pas jolie mais cela fait le job. Le générique dure ~10 secondes, je l’ai enregistré avec SSR aussi.

J'ai utilisé Kdenlive pour caler une musique libre dessus.

A la fin de cette étape, j'ai ma petite vidéo de générique de début, idem pour le générique de fin et mes épisodes (plus de 75).

Vous l'avez compris, l'étape ici est de créer des vidéos contenant les génériques.

J'ai cherché un peu dans ffmpeg pour arriver à cela. C'est une simple fonction de concaténation des vidéos.

J'ai écrit ma petite commande, ça marche.

cd /racine/des/videos/
OPENING=/chemin/vers/generique/debut.mp4
ENDING=/chemin/vers/generique/fin.mp4
video=/chemin/vers/videos.mp4
LIST_FILE=/tmp/mylist.txt
videoExtLess=\`echo $video | awk -F '.' '{print $1}'\`
echo "file '$OPENING'" > $LIST_FILE
echo "file '$video'" >> $LIST_FILE
echo "file '$ENDING'" >> $LIST_FILE
ffmpeg -safe 0 -f concat -i /tmp/mylist.txt ${videoExtLess}_avec_generiques.mp4

Du moins, je croyais que cela marchait. En vérité, cela cassait la synchronisation son/image. Ce fut très embêtant.

Je retourne à la case départ "logiciel de montage vidéo" (Kdenlive). Il y a un peu moins de manipulation précise à faire. Je colle les trois fichiers: générique de début, l’épisode, générique de fin et c'est parti.

Ça a fonctionné un temps.

Extraction du son et traitement

Une fois la vidéo complète avec les génériques. J'en extrait le son pour la diffusion en podcast, vraiment facile avec ffmpeg.

ffmpeg -i videos.mp4 -codec:a libmp3lame -qscale:a 2 output.mp3

Avant de sortir l'épisode en podcast, je le re-travaille un peu avec audacity pour supprimer les silences et pour normaliser le son (avec le filtre compresseur du logiciel).

Cela raccourcit l’épisode d’environ 30 mins et le son est bien meilleur.

Traitement sur la vidéo

Je souhaite effectuer les mêmes traitements sur les vidéos. J'ai bien lutté pour trouver une solution.

Normalisation

Pour la normalisation, j'ai trouvé un petit script python: ffmpeg-normalize.

ffmpeg-normalize -vu -p normalized-episode40.mp4 Episode_40.mp4

Supprimer les moments inutiles

Couper la vidéo quand il y a du silence fut bien plus complexe. Aucun logiciel de montage vidéo n'offre de filtre pour cela (je n'ai pas trouvé en tout cas) et j’allais pas le faire à la main. Cela m'aurait pris trop de temps.

J'ai donc cherché à droite à gauche et c'est Ryzz (Merci à lui) sur Linuxfr.org qui m'a envoyé vers une bonne piste: MoviePy

Un module python pour faire de l'édition vidéo. Il y a même un exemple utilisant MoviePy pour créer le résumé d'un match de foot grâce au son des supporters.

J'ai donc créé un script python pour couper les silences. J'en ai profité également ajouter les génériques avec MoviePy.

Quand mon script fut prêt j'avais déjà sorti 20 épisodes. J'en avais donc 40 en stock à refaire. J'ai donc lancer le script sur les 40 restant. Après 3 jours d’exécution. J'avais

tous mes épisodes prêts.

Si vous souhaitez voir le code du script et des explications techniques:
http://renaudguezennec.eu/index.php/2017/03/03/montage-video-en-python/

La réduction des silences est moins efficace qu’audacity mais il y a un gain indéniable.

Voilà, le degrés maximum que j’ai atteins dans l'automatisation.

Aller encore plus loin

Dans tout ce processus, il me manque encore des choses pour vraiment automatiser toute la chaîne.

Le premier point, c'est audacity. Il n'est pas possible d'utiliser audacity en ligne de commande. Je me suis un peu renseigné, il y a eu des tentatives mais c'est très complexe à mettre en place.

J'ai regardé un peu le code, espérant trouver un moyen d’appliquer les deux filtres dont j’ai besoin. Le code est peu lisible avec des define partout pour différencier les OS. Bref, un cauchemar à maintenir. Du coup, j’hésite à mis mettre vraiment ou rester en édition manuelle.

Ensuite, il me reste à automatiser la partie “mise en ligne” sur youtube et sur le wordpress.

Je suis certains que c’est possible mais pour l’instant, je n’ai pas pris le temps de le faire.

Si vous voulez voir le résultat:

Le wordpress pour écouter les épisodes: http://blog.rolisteam.org/

La playlist youtube des épisodes : https://www.youtube.com/playlist?list=PLBSt0cCTFfS5fi3v1LtB9sfeA8opY-Ge1

Les premiers n’ont pas bénéficié de tous les outils. Il y a clairement une marque de progression dans les épisodes jusqu’à l’épisode 20 environ.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars684046000avatar.jpg

