

Journal Détection de la syntaxe d'un langage informatique via un analyseur statistique naïf de type Bayésien

Posté par Octplane (site web personnel) le 28 juin 2012 à 14:06.
Licence CC By‑SA.

Étiquettes :

	golang

	objective-c

[image:]

Cher journal,

J'ai décidé d'essayer une petite expérience. J'ai constaté que la plupart des site de "paste" demandent toujours la syntaxe du morceau de code qu'on a collé et franchement, ça m'énerve un peu, parce qu'il ne faut pas être bien malin pour le voir avec ses yeux. En plus, leurs listes déroulantes sont toujours d'une longueur infinie et je trouve jamais le langage que je suis en train de coller (comment ça ? syslog, c'est pas un langage ?). Bref, c'était pénible.

Je me suis dit qu'il était peut être possible de faire cette detection en utilisant un programme. J'ai cherché un peu et la plupart des morceaux de code qui trainent sur la toile sont basés sur l'extension du fichier (Github fait ça par exemple). C'est bien pratique quand on a le fichier sur le disque, mais pas quand on te colle 10 lignes de code; dommage Eliane.

Finalement, je me suis dit, c'est peut être possible via un algo de type Bayésien. Accessoirement, je me suis dit que cela pourrait être un bon moyen d'apprendre un nouveau langage et j'ai choisi Go pour plusieurs raisons:

	Il se compile en natif (il va sûrement plus vite que d'autres langages, donc, surtout pour parser des Mo de sources)

	Il est multiplateforme (y compris sous windows, dis donc !)

	Il semble plus simple que C/C++ (pour lesquels je manque malheureusement de compétences, patience et tolérance pour les indirections et autres pointeurs)

	Il est supporté par Google et donc, y a sûrement un paquet de gars qui ont écrit sur code en Go avant moi.

D'ailleurs, pour ma bibliothèque Bayésienne, je suis tombé sur [jbrukh/bayesian](https://github.com/jbrukh/bayesian] dans Github et ça m'arrangeait bien, parce que le background statistique du filtrage Bayésien, a priori, je ne le possède pas.

J'ai attaqué la programmation en faisant un programme d'apprentissage pour indexer des langages à partir de fichiers que j'aurais en local (ce qui est assez ironique quand on pense que je finis par regarder l'extension d'un fichier avant de le cataloguer).

Ensuite, j'ai fait une petit Application Google App Engine qui permet de tester tout cela. Si tu es curieux, tu peux aller sur http://copie-privee.appspot.com/ et essayer avec tes snippets. Evite autre chose que du perl, ruby, python et objective-c.

Ca marche assez mal, mais clairement, tu mets un peu de ruby ou de go, il arrive à le voir. Si ça fait une erreur 500, c'est parce que mon code est pas très robuste, na !

Ca marche mal, pour plusieurs raisons:

	c'est un prototype tout pourri, qui gère mal les erreurs

	appengine est trop petit pour me permettre de charger un fichier de stats assez conséquent (limitation à 32MB par fichier, l'index que j'ai calculé avec 23000 documents en fait le double)

	ma tokenisation est assez maladroite: j'indexe les commentaires et les noms de variable, et ça, c'est moche…

Cependant, la preuve de concept fonctionne assez bien. Voici les directions dans lesquelles je veux faire évoluer le projet:

	le faire marcher ailleurs que sur GAE

	Indexer du c++, c, perl, shell en volume suffisant pour que cela fonctionne un peu

	Trouver une astuce pour tokenizer différemment et avoir des index à la fois plus efficaces et plus compact

	Tester si indexer une simple grammaire pour chaque language (et rien de plus) ne donne pas quelque chose d'intéressant

	Tester si indexer des n-grams (un peu comme les chaînes de Markov) ne donne pas de meilleurs résultats. J'en suis presque convaincu, mais il faut absolument symboliser le code pour rendre ça efficace.

Finalement, tout est open-source, alors si tu t'ennuies ce soir, tu peux jouer avec : https://github.com/octplane/go-code-classifier

A bientôt :)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

