

Journal Ⓒ✙✙ Le tiret bas (underscore) au début des variables membres ?

Posté par Oliver (site web personnel) le 18 août 2018 à 18:17.
Licence CC By‑SA.

Étiquettes :

	c++

	règle_de_nommage

	variables

	classe

	norme

	codage

[image:]

En réponse à guppy, j’ai rédigé un long commentaire qui mérite d’être promu en journal. _o_/

La norme C++ réserve l’utilisation du tiret bas (underscore)

Résumé de la norme Ⓒ✙✙ : https://en.cppreference.com/w/cpp/language/identifiers

[…]

An identifier can be used to name objects, references, functions, enumerators, types, class members, namespaces, templates, template specializations, parameter packs, goto labels, and other entities, with the following exceptions:

	the identifiers that are keywords cannot be used for other purposes;

	the identifiers with a double underscore anywhere are reserved;

	the identifiers that begin with an underscore followed by an uppercase letter are reserved;

	the identifiers that begin with an underscore are reserved in the global namespace.

[…]

Reformulons + exemples

On reformule différemment :

	
Éviter le tiret bas au début ;

#ifndef _MA_CLASSE_H // Non, on a dit pas au début
#define _MA_CLASSE_H
...
#endif

#ifndef MA_CLASSE_H_ // Oui, autorisé à la fin
#define MA_CLASSE_H_
...
#endif

	
Éviter deux tirets bas consécutifs n’importe où ;

#ifndef MA_CLASSE__H // Non, pas de double tiret bas au milieu
#define MA_CLASSE__H
...
#endif

#ifndef MA_CLASSE_H__ // Non, pas à la fin non plus
#define MA_CLASSE_H__
...
#endif

	
Exception du tiret bas au début.

Autorisé dans une portée locale (local scope) et suivi par une minuscule (ou un chiffre…).

#ifndef MA_CLASSE_H // Oui
#define MA_CLASSE_H

class _MaClasse // Non
{
 const double _PI = 3.14; // Non
 int _MonEntier = 0; // Non
 int _monEntier = 0; // Oui
 int __monEntier = 0; // Non
 int _mon_entier = 0; // Oui
 int _mon__entier = 0; // Non
 int _0_0_ = 0; // Oui
 int _ = 0; // Oui
 int _Fonction(); // Non
 int _fonction(); // Oui
};

int _fonction(); // Non

int fonction (int _a) { // Oui
 int _ = _a; // Oui
 return _;
}

#endif

Règle simple

On simplifie la règle pour la retenir :

	Jamais deux tirets bas consécutifs n’importe où ;

	Le tiret bas au début réservé aux _variablesMembres.

Car le tiret bas pour les variables membres à des avantages.

Mais ceux qui ne sont pas d’accord pourraient plutôt adopter cette règle :

	Jamais deux tirets bas consécutifs ;

	Jamais le tiret bas au début.

Avantages du tiret bas au début

	Quand seules les variables commencent par un tiret bas, l’auto-complétion distingue les fonctions des variables. Lors de l’activation de l’auto-complétion, tout est listé, mais d’abord les fonctions sans être pollué par les variables. Et si on cherche le nom d’une variable, il suffit d’entrer un tiret bas. Attention à éviter les variables membres avec une majuscule en second caractère car c’est potentiellement un mot réservé.

	Un second avantage, plus esthétique, est l’alignement des tiret bas lors de la déclaration des variables membres. C’est difficilement le cas avec le tiret bas final.

Exemples issus des GreatPractices C++ rules :

struct Limit
{
 int32_t quantity;
 double price;
 bool isActive;
};

class MyClass
{
public:
 double volume() const;
private:
 int32_t _quantity;
 double _price;
 bool _isActive;
};

double MyClass::volume() const
{
 volume = _price * _quantity
 return volume;
}

Quand utiliser le tiret du bas ?

Si une struct (ou une class) expose ses variables en public et ne possède pas (ou peu) de fonctions, alors pas besoin de distinguer les variables des fonctions (pas d’intérêt à utiliser les tirets du bas).

Par contre, si une class (ou une struct) expose des fonctions en public et le reste est private, alors distinguer les nombreuses fonctions des nombreuses variables est intéressant (variables membres préfixées par le tiret du bas pour les variables s’applique).

Bien entendu, une class ou struct qui a pour destinée de ne posséder que peu de fonctions et variables, alors pas besoin d’artifice pour distinguer les fonctions des variables, le tiret du bas n’est pas obligatoire.

Règle simple :

	Choisir struct quand ce sont essentiellement des variables public, et donc ne pas utiliser le tiret du bas ;

	Dans les autres cas, choisir plutôt class et préfixer les variables membres avec un tiret bas ;

	Déroger à la règle dans les autres cas (trait, …).

Voir aussi

	Why use prefixes on member variables in C++ classes?

	Convention of using underscores in C++ class member names

	Class members prefixed with underscore

	Might starting variables/members with an underscore puzzle the compiler?

	Why C# and C++ use _name convention?

	What kind of prefix do you use for member variables?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars403053000avatar.gif

