

Journal Quelques bonnes pratiques Python pour 2019

Posté par Oliver (site web personnel) le 30 mars 2019 à 19:22.
Licence CC By‑SA.

Étiquettes :

	python

	python2

	python3

[image:]

Sommaire

	
Installer des modules Python
	python2 -m pip install --user "nom-du-module-python"

	python3 -m pip install --user "nom-du-module-python"

	Mettre à jour les modules Python

	Rendre un script exécutable

	Compatibilité Python-2 et Python-3

	Arborescence d'un projet Python

	Et tes astuces ?

J'ai découvert/appris Python en le pratiquant au bureau à l'arche, et sans collègue à la fois expert et pédagogue. Du coup, j'ai accumulé plein de mauvaises pratiques que je tente désormais de corriger. Ce journal pour vous partager mes astuces et vous éviter les mêmes pièges :-)

Je ne suis pas encore un expert Python, alors merci de me corriger gentiment dans les commentaires ;-)

Je publie ce journal sous licence CC0 (sous domaine publique dans les pays où cela et possible) car je veux te permettre de recopier/modifier/réutiliser/republier ce contenu sans avoir à me citer comme auteur (sauf que la loi de pays comme la France t'oblige quand même à me citer).

Installer des modules Python

Le gestionnaire de paquets Python de référence s'appelle pip et au tout début, j'installais les dépendances Python manquantes avec :

sudo pip install "nom-du-module-python" # en root

car cette commande ne semblait pas toujours fonctionner :

pip install "nom-du-module-python"

En fait la première commande ci-dessus rentre en conflit avec :

sudo apt install "autre-nom-du-meme-module-python"

Ça fout le bazar dans l'installation des paquets de sa distrib… :-(

[image: Voilà à quoi ressemble mon installation avec `sudo pip` et `sudo apt`]

En lisant pip ticket #5599 on comprend le besoin de préciser l'argument --user:

pip install --user "nom-du-module-python"

Mais il y a mieux:

python -m pip install --user "nom-du-module-python"

Et encore mieux si nos scripts ont migré sous Python-3:

python3 -m pip install --user "nom-du-module-python"

Donc, remettons bien en gras les bonne façons d'installer un module Python:

python2 -m pip install --user "nom-du-module-python"

python3 -m pip install --user "nom-du-module-python"

Mais quelle différence entre pip3 et python3 -m pip ? Les détails sur stackoverflow (en anglais). En bref, on est sûr que python3 -m pip utilise la même arborescence d'installation que le script que tu exécutes avec python3 "nom-du-script.py". C'est d'autant plus recommandé si ton $PATH est tarabiscoté, si tu as plusieurs installations de Python ou que tu utilises MS-Windows.

Mettre à jour les modules Python

Est-ce que pip permet de mettre à jour tous les modules d'un coup comme un apt upgrade ? Et bien, pas vraiment. Il faut le faire pour chaque module :

python3 -m pip install --user --upgrade "nom-du-module-python"

Attention, j'ai déjà réussi à casser pip avec cette commande :

pip install --upgrade pip

Pour tout mettre à jour, j'enregistre préalablement les versions des modules actuellement présents :

python3 -m pip list --user --format freeze > ~/requirements_avant_pip_upgrade.txt

Et une longue ligne de commande pour tout mettre à jour :

python3 -m pip list --user --format columns | awk 'FNR>2{print $1}' | while read module ; do python3 -m pip install --user --upgrade $module ; done

Visualiser les changements :

python3 -m pip list --user --format freeze > ~/requirements_apres_pip_upgrade.txt

diff -u ~/requirements_avant_pip_upgrade.txt ~/requirements_apres_pip_upgrade.txt | vi -

quitter en tapant :q! [Entrée]

Ou avec une application graphique :

meld ~/requirements_avant_pip_upgrade.txt ~/requirements_apres_pip_upgrade.txt

En cas de problème, revenir aux versions précédentes :

python3 -m pip install --user -r ~/requirements_avant_pip_upgrade.txt

En fait, ce n'est pas recommandé de mettre à jour tous ses modules Python car cela risquerait de casser une autre application Python qui utilise la même dépendance. Cela m'est arrivé récemment avec le module redis dont la version 3 casse la comptabilité avec la version 2 ! (mais pourquoi ne pas avoir créé de nouvelles fonctions pour la nouvelle fonctionnalité ?)

Rendre un script exécutable

Pour lancer leur script Python, de nombreuses personnes font :

python mon-script.py

Avec deux petits changements, il est possible de le lancer juste comme ça :

./mon-script.py

Premier changement, dire que le script est exécutable :

chmod +x mon-script.py

Second changement, on rajoute sur LA PREMIÈRE ligne du fichier mon-script.py :

#!/1usr/bin/python

Ou mieux :

#!/usr/bin/python3

Ou encore bien mieux :

#!/usr/bin/env python3

Le #! s'appelle shebang et même des langages dont le # n'est pas utilisé pour les commentaires le prennent en charge, comme pour PHP.

Compatibilité Python-2 et Python-3

Les distributions GNU/Linux sont enfin en train de migrer tous leurs scripts vers Python-3 (Pyton-3.0 a 10 ans). Mais difficile d'identifier si un script est compatible seulement v2 ou seulement v3 ou s'il est compatible avec les deux.

Pour aider les intégrateurs, merci de remplacer python par python2 ou python3 dans vos projets open-source. Et si compatible avec les deux versions de Python ? Si ton application compatible v2 et v3 pourrait être utilisée sur une ancienne distribution GNU/Linux qui n'a pas Python3, alors continue d'utiliser python. Si ce n'est pas le cas, utilise alors python3.

Pour s'assurer que tes scripts Python2 soient compatibles Python3 rajoute au début de tous tes fichiers *.py :

from __future__ import absolute_import, division, unicode_literals, print_function

Attention, je me suis fait avoir avec un bug uniquement reproductible avec la ligne précédente. Quand je lançais python2 en mode interactif pour vérifier mon bout de code, je n'avais aucun soucis. Donc pense à taper from __future__ import absolute_import, division, unicode_literals, print_function quand tu veux reproduire un bug dans ton script python2. Il y a moyen de pré-exécuter cette ligne automatiquement. Avec ipython :

$ cat ~/.ipython/profile_default/startup/ipython_config.py

from __future__ import absolute_import, division, unicode_literals, print_function

Arborescence d'un projet Python

Kenneth Reitz recommandait https://github.com/kennethreitz/samplemod

docs\
sample\
tests\
LICENSE
MANIFEST.in
Makefile
README.rst
requirements.txt
setup.py

Plus récemment, l'équipe Python Packaging Autority recommande https://github.com/pypa/sampleproject

data\
sample\
tests\
LICENSE.txt
MANIFEST.in
README.md # PyPi accepte Markdown depuis 2018
setup.cfg # Alternative à setup.py
setup.py
tox.ini # Plus besoin de requirements-test.txt

Si tu préfères Markdown à reStructuredText, sache que PyPi gère même les tableau Markdown.

Mais une révolution est en cours avec les PEP-517 et PEP-518, avec l'adoption du fichier pyproject.toml en alternative du vénérable setup.py et son setup.cfg (même pip adopte pyproject.toml). Mais la vrai révolution est le découplage entre empaquetage et installation. Pour les anglophones je recommande la lecture de Python packaging - Past, Present, Future par Bernát Gábor.

Donc bientôt nous pourrons avoir une arborescence plus simple :

docs\
sample\
tests\
LICENSE.txt
README.md
pyproject.toml
tox.ini

Par exemple, les dépôts de code source de poetry et de la PEP-517.

Et tes astuces ?

Merci de partager tes recommandations, tes mésaventures, tes bonne pratiques… :-D

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/866164c102c13cd4b05d6887e2275d5599af456b02adeb5ea7900956.jpg

EPUB/avatars403053000avatar.gif

