

Journal An unexpected Linux : reverse engineering

Posté par Pinaraf le 28 mai 2017 à 11:57.
Licence CC By‑SA.

Étiquettes :

	reverse

	arm

	linux_embarqué

[image:]

Sommaire

	0) Bonjour archive, qui es-tu ?

	1) Éditeur hexadécimal, mon ami !

	2) Le script Python

	3) Récursion infinie…

Bonjour bonjour

Depuis quelques semaines maintenant, je suis l'heureux propriétaire (et pas privateur) d'un flipper Stern Ghostbusters, une bien belle machine bourrée de mécanique et d'électronique…

Lors de l'installation, le vendeur m'a expliqué les rudiments de la maintenance de la bête, et m'a surtout fait télécharger et installer une mise à jour du firmware, en m'expliquant qu'il avait déjà eu des gros soucis sur des machines suite à une mise à jour mal appliquée.

Le firmware pèse un petit 967MB. PARDON ? 967MB pour un flipper ?

Le poids associé à la crainte sur un éventuel soucis lors des futures mises à jour m'a donc incité à regarder le contenu de cette archive… Ceux qui souhaitent jouer également peuvent la télécharger sur le site de Stern Pinball.

0) Bonjour archive, qui es-tu ?

Le classique, quand on rencontre un nouveau fichier sans connaître son véritable format (le fichier a pour extension spk), c'est de demander à la libmagic et son utilitaire file…

$ file ghostbusters-1_13.spk
ghostbusters-1_13.spk: data

Ha. Allons bon…

$ strings ghostbusters-1_13.spk | head -n 10
SPKS
SPK0|e
SIDX
spike
STRS
etc/init.d/game
etc/init.d/game_monitor
etc/init.d/update
etc/fstab
usr/local/spike/kernel.sha1

Mais qu'est-ce-donc que ceci ? Je ne connais aucun format d'archive répondant à ce format, et mes recherches sur internet n'ont rien trouvé. On va continuer avec strings quelques instants… tentons la chance.

$ strings ghostbusters-1_13.spk | grep vermagic
vermagic=2.6.30 mod_unload ARMv5

Ha ben voilà, on a un noyau Linux dans le flipper ! Ça c'est une bonne surprise, j'ai maintenant un Linux de plus à la maison… Et autre bonne surprise, ce n'est pas un format compressé vu que la chaîne est encore en clair.

Mais ça ne m'explique pas ce qu'est ce format d'archive, car si le noyau est bien un Linux, alors ce n'est pas une archive disque qui elle serait reconnue par file. Étrange, étrange.

1) Éditeur hexadécimal, mon ami !

Pour la suite des opérations, j'utilise l'excellent okteta et sa très pratique table de conversion. Le but sera de comprendre le format du fichier pour pouvoir ensuite l'extraire.

À l'ouverture, on remarque donc en premier élément SPKS, suivi d'un ensemble de 64 bits avant la chaîne SPK0.

Que peuvent contenir ces 64 bits, qui sont : 0xEFBB693C 0x02000000… Après un peu de creusage de méninges, en little endian, les 32 premiers bits correspondent à l'offset pour atteindre la fin du fichier… donc la taille de la section qui suit ? Et 2 pourrait être un nombre d'éléments ou un flag quelconque ?

Laissons ce 2 pour plus tard, et continuons.

SPK0 est suivi à son tour d'un entier de 32 bits puis d'un mot «SIDX»… Il semblerait que ce format utilise des en-têtes ASCII de 4 lettres pour chacune des sections, ce qui va beaucoup nous aider.

L'entier de 32 bits est à son tour… un offset, qui nous mène à un nouveau «SPK0» dans le fichier. Et ce SPK0 est suivi d'un offset qui nous mène à la fin du fichier…

Donc le 2 dans SPKS indiquait un nombre d'éléments, des «sous-archives» probablement… Tout de suite après se trouve un SIDX, suivi par un entier de 32 bits indiquant sa taille…

Et on peut itérer ainsi… Le bloc SPKS contient N SPK0 qui contiennent successivement un SIDX, puis des STRS contenant la liste des noms de fichier, puis une liste de FINF, autant qu'il y a de strings, puis une section SDAT qui ne contient par contre pas d'information de taille (elle commence par un 0 sur 32 bits) mais juste les fichiers concaténés les uns aux autres… zut, la structure change sur cette partie, probablement pour simplifier la construction du fichier.

Vu les noms, on peut se douter que FINF contient les informations sur les fichiers. Le premier fichier est etc/init.d/game, et le second etc/init.d/game_monitor… Lisons donc les données, ces fichiers commenceront probablement par un shebang.

SDAT est suivi, comme je l'ai dit, de 4 octets à 0, puis… d'un #!/bin/sh, commençant à l'adresse 0x6E0. Bingo. Il n'y a plus qu'à localiser le suivant… Il se situe à l'adresse 0x1F83. Donc le fichier pèse 6307 octets. Et quand on cherche 6307 dans le premier bloc FINF, on le trouve en troisième position. Donc un FINF contient 32 bits pour indiquer la taille du FINF, 32 bits de on sait pas quoi (ils sont à 0), puis la taille du fichier.

Nous voilà désormais équipés pour écrire le script python qui décompressera l'archive.

2) Le script Python

Quick and Dirty devrait être une variante officielle de Python.

#!/usr/bin/env python3

import os
import os.path
import struct
import sys

fh = open(sys.argv[1], "rb")

hdr_magic = fh.read(4)
assert(hdr_magic == b'SPKS')

whole_size, part_count = (struct.unpack('<II', fh.read(8)))
print("File size is %s, for %s parts" % (whole_size, part_count))

for part in range(part_count):
 files = []
 print("Working on part %s" % part)
 hdr = fh.read(4)
 assert(hdr == b'SPK0')
 # Following the header is the part size
 (whole_size,) = struct.unpack('<I', fh.read(4))
 header_start = fh.tell()
 assert(fh.read(4) == b'SIDX')
 (idx_size,) = struct.unpack('<I', fh.read(4))
 fh.read(48)
 assert(fh.read(4) == b'STRS')
 (strs_size,) = struct.unpack('<I', fh.read(4))
 strings = fh.read(strs_size).split(b'\0')

 # Now the file infos
 hdr = b''
 i = 0
 while hdr != b'FEND':
 hdr = fh.read(4)
 (size,) = struct.unpack('<I', fh.read(4))
 if size > 0:
 hdr_data = fh.read(size)
 (file_offset, file_size) = struct.unpack('<II', hdr_data[:8])
 files.append((strings[i], file_size))
 i += 1

 # Now we should have reached SDAT
 assert(fh.read(4) == b'SDAT')
 fh.read(4) # Skip 4 \0

 header_end = fh.tell()
 i = 0
 for (filename, file_size) in files:
 print("Extracting %s..." % (filename))
 os.makedirs(os.path.dirname(filename), exist_ok=True)
 tgt = open(filename, "wb")
 tgt.write(fh.read(file_size))
 tgt.close()
 i += 1

assert(fh.read(4) == b'SEND')

Et on peut lancer le script, dans toute sa splendeur…

$ python3 spk.py ghostbusters-1_13.spk
File size is 1013562351, for 2 parts
Working on part 0
Extracting b'etc/init.d/game'...
Extracting b'etc/init.d/game_monitor'...
Extracting b'etc/init.d/update'...

C'est-y pas beau ?

3) Récursion infinie…

Dans les fichiers extraits, nous avons un fichier binaire ARM usr/local/bin/spk… SPK ? C'est trop tentant…

Mais ma machine est hélas en amd64, pas en ARM.

QEMU à la rescousse les amis, dans son mode le moins connu, le mode «user», qui permet de lancer un binaire Linux d'une architecture X sur un Linux d'une architecture Y…

$ qemu-arm ./usr/local/bin/spk
Usage: spk command [command_opts]
 spk install [-s] [-f] PACKAGE_FILENAME
 spk list PACKAGE_FILENAME

Hoooo que c'est beau… Nous avons là le programme pour extraire l'archive, c'est magique ! Il suffisait donc d'extraire l'archive pour pouvoir l'extraire…

Et la commande list fonctionne bien pour lister le contenu de l'archive. Et excellente nouvelle, des sha1sum et des md5 (on sait jamais, pour les collisions ?) sont donnés pour chaque fichier, ce qui devrait un peu protéger les mises à jour…

Par contre, le contenu est beaucoup moins intéressant pour de futurs dépannages du flipper en cas d'incident plus poussé : tout est dans un fichier image.bin de 973638KB, à un format inconnu… jusqu'à un prochain journal, si j'en ai le temps…

PS: Alors, j'ai fait cette recherche…

$ strings ghostbusters/game | grep -i openssl
SHA1 part of OpenSSL 1.0.2 22 Jan 2015

Je veux pas critiquer, mais il y a des outils de communication, propriétaires, qui utilisent encore aujourd'hui des OpenSSL plus vieux qu'un flipper… la honte…

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

