

Journal De l'écriture d'un pilote Linux pour un gadget - suite

Posté par Pinaraf le 17 août 2010 à 22:03.

Étiquettes :

	kernel

	pilote_libre

[image:]

	
Cher journal

Je t'ai expliqué tantôt un à-peu-près guide (plutôt une rétrospective) sur l'écriture d'un pilote Linux pour un gadget plutôt débile : les diodes d'un PC portable Toshiba (cf. https://linuxfr.org/~PieD/29986.html pour tout relire si ça vous dit, mais c'est long et y'a quand même quelques fautes).

J'ai fait chier proposé sur les mailing lists le pilote, sous forme de patch, et il a été intégré dans le noyau aux environs du 3 août, et est donc présent dans le noyau 2.6.36-rc1.

Bon, par contre, la mauvaise nouvelle, c'est que je ne peux pas tester sur le PC portable de mon pote. La réaction chimique suivante a eu lieu : PC + H2O = PC cassé.

Je vais indiquer tout de même ici la démarche que j'ai suivi pour le test et la soumission du pilote.

0) Environnement requis

- Le nécessaire pour compiler un pilote (gcc, make, les en-têtes du noyau...)

- Git (attention, si vous êtes allergiques à git, vous n'avez aucune chance de contribuer au noyau)

- Le matériel pour tester votre pilote, quand même un peu...

Ensuite, configurez git et récupérez le dernier noyau pour la branche de votre pilote. Dans mon cas, le pilote toshiba_acpi est dans drivers/platform/x86, ce qui correspond à la branche platform-drivers-x86 du noyau.

Voici les manipulation pour la configuration et la récupération du noyau :

- git config user.name <votre nom>

- git config user.mail <votre adresse mail>

- git clone git://git.kernel.org/pub/scm/linux/kernel/git/mjg59/platform-drivers-x86.git

1) Compilation du pilote tout seul

Par défaut, les pilotes doivent être "intégrés" dans l'arbre du noyau, dans le sous-dossier drivers. Ce côté tout-en-un est très très pratique, mais je ne me voyais pas recompiler un noyau différent pour faire les tests... (En vertu d'un paramètre majeur : la flemme).

Donc j'ai extrait le pilote toshiba_acpi du dernier noyau pour le compiler à part (il contient juste un fichier, toshiba_acpi.c), avec juste un makefile tout bête.

Voici le fichier Makefile correspondant :

obj-m += toshiba_acpi.o

all:

 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Donc la compilation se fait avec un simple make, et cela fait apparaître un fichier toshiba_acpi.ko. Il suffit ensuite de le charger/décharger avec les classiques insmod/rmmod.

Nous avons donc le pilote toshiba_acpi, dans sa dernière version, compilable, bidouillable, testable à souhait.

2) Patcher le pilote

Le patch du pilote est la partie la plus fun.

Rappelez-vous, vous êtes en espace noyau, allez-y doucement, ne faîtes pas les cons...

Dans mon cas, le patch était très simple, j'ai procédé en deux étapes :

 a) écriture des fonctions pour allumer/éteindre les diodes, avec des appels dans la fonction d'initialisation du module pour tester directement au insmod si ça marche ou pas

 b) implémentation de la classe led

Si possible, utilisez git proprement pour commiter (utilisez l'option -s pour ajouter les "Signed-off") lorsque vous atteignez des étapes importantes (si toutefois votre travail nécessite plusieurs étapes).

3) Envoi du patch

Bon, je me suis auto-flagellé pour ne pas avoir lu la documentation incluse dans le noyau sur l'envoi de patchs, alors je le dis ici : suivez ce guide, le guide du noyau (Documentation/SubmittingPatches) ou tout guide officiel, mais surtout pas votre "instinct".

La méthode est simple : c'est basé à 100% sur git... (Qui est définitivement plus qu'un simple gestionnaire de versions, vu qu'il gère tout le workflow du noyau Linux...)

- commitez vos modifications (sans dec')

git commit -sa

- préparez un patch ou un ensemble de patchs à partir de vos commits :

git format-patch origin -o /home/moi/working_directory/patchs

- récupérez, à l'aide d'un script du noyau, la liste des mainteneurs du code que vous modifiez

./scripts/get_maintainer.pl /home/moi/working_directory/patchs/*

- lancez une vérification de vos patchs (hou qu'elle est méchante elle)

./scripts/checkpatch.pl /home/moi/working_directory/patchs/*

- envoyez le patch par mail à la mailing list...

git send-email --to=<mailing list principale> -cc=<mainteneur 1> -cc=<mainteneur ...> -cc=<mainteneur N>

4) Soyez content

Voilà, vous avez contribué à l'un des plus grands projets libres, l'un des plus célèbres en tout cas.

Pour info, vous trouverez le pilote pour les diodes toshiba dans le noyau 2.6.36-rc1... Et si vous pouviez tester, ça me ferait plaisir

À (très) bientôt pour de nouvelles aventures (hé oui, mon pote a acheté une nouvelle machine...)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

