

Journal De l'écriture d'un pilote Linux pour un gadget

Posté par Pinaraf le 24 juillet 2010 à 20:58.

Étiquettes :

	pilote

	lwn

[image:]

	
Bonjour cher journal

Depuis des années, j'aide des amis ou de la famille avec l'installation et l'utilisation de Linux sur leurs machines. C'est une activité pouvait être souvent pénible (les questions et problèmes récurrents quoi, le pilote ATI qui plante par exemple).

Parfois, une question plus amusante apparaît, comme "comment gérer les diodes de décoration du clavier de mon PC portable Toshiba ?".

Et là commence un merveilleux périple, entre pilote Linux, ACPI, DSDT, pilote Windows, reverse engineering et écriture de code C...

Je vous prie par avance de m'excuser pour mes méthodes, mes explications ou encore les outils potentiellement non libres que j'ai pu utiliser (le principal étant probablement IDA sous Windows). Je ne vais tenter ici que de donner une information que j'estime pouvoir être utile à tout un chacun, et tenter de retranscrire la progression dans l'écriture du bout de code de quelques lignes qui arrivera peut être dans un futur noyau...

0) Description exacte du problème

Le PC en question est un Toshiba Qosmio G50 122.

Première difficulté : ce modèle est réservé à la france ou à l'europe, et les informations à son sujet sur internet sont donc relativement rares.

Le PC en question dispose d'un clavier assez classique, avec une série de boutons "tactiles" représentés juste par une petite diode chacun pour les touches multimedia et 2/3 conneries (activer la webcam, lancer le lecteur multimedia...)

Sur le côté du clavier, dans les enceintes, deux diodes également, et un cercle lumineux autour d'un bouton de contrôle du volume.

Bref, un clavier bien lumineux, fort peu pratique pour regarder un film par exemple.

Heureusement, sur le clavier, une touche est présente pour éteindre ces diodes. Problème : elle ne marche que sous windows, et ne fait rien sous Linux...

Idem pour les 2/3 conneries à côté des touches multimedia...

1) Première étape, l'analyse du système

Les périphériques visibles par lspci, lsusb ou une recherche dans /sys ne donnait pas de résultat intéressant. Juste les périphériques classiques (carte réseau, carte graphique) ou encore le contrôleur bluetooth...

Les touches n'émettent également aucun signal, ni dans xev, ni à la lecture d'un des fichiers de /dev/input.

Fort heureusement, un article lu tantôt sur LWN ne met sur la voie : http://lwn.net/Articles/367630/

Toshiba a implémenté "dans" l'ACPI le bouton d'activation/désactivation du bluetooth.

Pourquoi n'auraient-ils pas fait de même pour le contrôle des diodes ?

2) Explication sur l'ACPI

Attention, il s'agit uniquement de ce que j'en ai compris !

L'ACPI est une norme complexe pour la configuration, la découverte du matériel et la gestion de l'énergie. Norme particulièrement peu pratique d'un point de vue de geek/libriste (on se souvient du mail de Bill Gates montré lors du procès Microsoft exigeant que l'ACPI ne marche bien qu'avec "Windows NT").

Dans cette norme, le BIOS exporte une série de tables à l'OS, sous forme d'un bytecode, que l'OS devra interpréter. Parmi ces tables, la plus importante est sûrement la "Discrete System Descriptor Table", contenant des informations de configuration, une description du matériel donc, comment accéder à diverses informations sur le matériel...

Il y a à peu près 4 ans, il était fréquent, si vous vous souvenez bien, de devoir patcher cette DSDT (c'est-à-dire de forcer le noyau à lire une autre DSDT que celle du BIOS) afin de pouvoir avoir l'état de la batterie par exemple...

Dans le cas du portable Toshiba de mon pote, un grep sur sa DSDT renvoie 2 périphériques avec un ID "prometteur" : TOS6205 (nommé BT) et TOS6208 (nommé VALZ). TOS6205 sert pour le bluetooth, aucun intérêt pour nous, par contre VALZ est un système générique de toshiba pour le contrôle de nombreuses choses sur le matériel. Le pilote Linux existant pour ce module, toshiba_acpi, nous le prouvera : gestion des ventilateurs, des sorties video, du rétro éclairage, de certains raccourcis clavier... Le choix ne manque pas !

3) Premières tentatives : support des touches "à la con"

La structure du pilote toshiba_acpi.c semble assez simple au premier abord : un tableau de structures fournit une sorte de "keymap", et aucune des touches ne semble correspondre aux touches bizarres du clavier.

Mais la lecture du code montre un soucis : l'appui sur une touche inconnue doit déclencher un warning indiquant le code de la touche... Or aucun warning n'est émis...

La lecture du code et de la section de la DSDT sur le VALZ sont néanmoins fort instructifs : tout semble être exécuté dans une seule fonction "magique", prenant en entrée 6 entiers non signés sur 32 bits, et renvoyant 6 entiers également. Cette fonction magique se nomme GHCI. Une autre fonction est sensée activer les raccourcis clavier, elle s'appelle "ENAB". Mais ne marche apparemment pas.

Pour rendre la DSDT plus lisible, j'ai décidé de "traduire" en à-peu-près C la fonction GHCI. Disons le clairement : ça n'a pas servi à grand chose, il est quasiment impossible de tirer quelque chose d'utile de ce blob. J'en ai déduit, au mieux, l'existence de valeurs non gérées par le pilote linux, mais sans la moindre idée sur la signification de ces valeurs.

Le support des touches à la con étant malheureusement impossible en l'état de mes connaissances de ce périphérique toshiba bizarre, je suis passé au problème des diodes.

4) Problème des diodes : reverse engineering powa...

C'est avec un certain plaisir que j'ai commencé l'étape de reverse engineering du pilote et des utilitaires Toshiba windows afin de pouvoir trouver les séquences magiques à donner à la fonction GHCI.

Naïvement, j'ai commencé mon travail au niveau du pilote en mode noyau directement, en me disant que, en toute logique, un utilitaire quelconque allait l'appeler pour lui dire "allume les diodes", "éteint les diodes"...

J'ai donc téléchargé et lancé le logiciel DriverView (http://www.nirsoft.net/utils/driverview.html) pour savoir quels pilotes sont chargés sur le système.

Un pilote a retenu mon attention, Toshiba Added Value, nommé TVALZ.sys... Hooo, avec le même nom que le périphérique décrit dans la DSDT.

Il était temps de commencer l'étape très pénible de désassemblage et de compréhension du pilote, à l'aide de la version gratuite d'IDA (je n'ai pas encore pu m'offrir la version payante : http://www.hex-rays.com/idapro/idadownfreeware.htm).

Pour ceux qui n'ont jamais utilisé ce genre d'outils, on obtient un code assembleur plus ou moins commenté, divisé en fonctions. Les paramètres donnés à chaque fonction sont partiellement identifiés, mais un gros travail d'analyse manuel reste (par exemple, passer d'une fonction sub_0410230 à une fonction).

Heureusement, Toshiba a mal géré le débuggage dans son pilote, et les messages de debug sont donc présents dans le code desassemblé ! J'ai donc pu identifier les différentes fonctions du pilote aisément. Je fus alors déçu : une fonction est présente par méthode dans l'objet VALZ de la DSDT, mais aucune trace d'un appel de la-dite fonction.

Tout penaud, je me dirigeai alors vers l'espace utilisateur et les utilitaires Toshiba.

Un outil permet d'associer à chaque touche à la con un exécutable. Il doit donc y avoir un exécutable permettant de couper ou activer les diodes.

Une méthode stupide a alors marché : surveiller le gestionnaire des tâches windows, et appuyer sans relache sur la touche pour allumer/éteindre les diodes... Et là, on voit apparaître un exécutable "Dimmer.exe", tout petit (50ko).

Je commençai ma recherche par les chaînes de caractères. La première chaîne de la liste retint mon attention, "\\.\TVALD". Il s'agit, sous windows, d'un fichier spécial correspondant à un périphérique (un peu comme si l'on avait un fichier /dev/tvald).

Cette chaîne n'est utilisée qu'à un endroit, dans un appel à la méthode CreateFileA (qui permet aussi d'ouvrir des fichiers).

Victoire, suivons l'itinéraire du handle obtenu (identifiant vers le fichier ouvert)...

Voici une vue approximative du code :

- HDL handle;

- if (!CreateFile("\\.\TVALD", &handle) { return; }

- if (!sub_401120(handle)) { return; }

- sub_401040(handle);

- sub_401170(handle);

On peut en déduire, à peu près, que la fonction sub_401120 contrôle la présence du périphérique.

Les fonctions sub_401040 et sub_401170 sont encore à déterminer.

Debuggueur à la rescousse !

Pour ce faire, j'utilise OllyDbg 2.0 (http://www.ollydbg.de)

Et l'exécution confirme : la fonction sub_401040 est bien responsable du changement d'état des diodes.

Mais comment fonctionnent les trois fonctions sub_401120, sub_401040 et sub_401170 ?

La première fonction, sub_401120, est intéressante : elle dispose, selon IDA, de 7 variables locales et une variable en paramètre (le handle).

Ce qui est intéressant, c'est que ces sept variables sont initialisées ainsi :

xor eax, eax ; mise à zéro de eax

mov [esp+30h+var7], eax

mov [esp+30h+var6], eax

mov [esp+30h+var5], eax

mov [esp+30h+var4], eax

mov [esp+30h+var3], eax

mov [esp+30h+var2], eax

La troisième, identifiée par IDA comme étant un nombre d'octets retournés, n'est pas initialisée.

On initialise donc à zéro ces six variables... Puis l'opération suivante est effectuée :

mov [esp+3Ch+var7], 0F100h

Puis une méthode sub_401000 est appelée. Sa signature, identifiée par IDA, est la suivante :

int __cdecl sub_401000 (LPVOID lpInBuffer, DWORD BytesReturned, HANDLE hDevice);

Dans un monde linuxien, cela serait plutôt :

int sub_401000 (int in[6], int *outLength, FILE *dev);

Elle est appelée avec en paramètre la variable var7 et la variable BytesReturn de la méthode sub_401120...

Et elle se résume à un appel à la méthode DeviceIoControl, et à une vérification des résultats de l'appel.

La méthode DeviceIoControl reçoit en paramètre la première variable, et une indication de longueur de 24 octets...

Et c'est là que l'on comprend que les variables 2 à 7 sont en fait un tableau de 6 entiers de 32 bits... Comme les paramètres de la méthode GHCI. Aussi incroyable que cela puisse paraître, alors que la fonction GHCI permet de contrôler jusqu'aux ventilateurs, un programme pourrait l'exécuter sans contrôle... Mais bon, qui ne tente rien n'a rien, identifions tous les appels à la méthode sub_401120 (merci encore à IDA pour ce travail de fourmi fait automatiquement), et regardons comment sont initialisés les paramètres.

- GHCI(0xF200, 0, 0, 0, 0,0)

 renvoie normalement un tableau de six entiers, qu'on peut utiliser pour savoir si l'illumination est disponible.

- GHCI(0xF300, 0x14E, 0, 0, 0, 0)

 indique dans le troisième entier si les diodes sont allumées ou éteintes

- GHCI(0xF400, 0x14E, ?, 0, 0, 0)

 le troisième paramètre donne le nouvel état des diodes

- GHCI(0xF200, 0, 0, 0, 0, 0)

 je ne sais pas, fermeture de la connexion ?

5) Implémentation sous Linux

Cette partie est très simple, et je n'ai pas pensé à récupérer pour l'instant le code source que j'ai écrit... Ainsi, je ne donnerai que la théorie.

3 fonctions C sont nécessaires :

- une pour vérifier la présence du matériel,

- une pour allumer/éteindre la diode,

- une pour connaître l'état de la diode.

L'appel GHCI est assez facile à l'aide d'une des fonctions déjà implémentées dans le pilote, hci_raw. Il nous suffit de construire des tableaux de six uint32 pour faire ce que l'on souhaite...

Une fois chaque méthode implémentée, il suffit d'appeler la méthode de vérification de présence du matériel dans l'initialisation du pilote, puis d'utiliser la structure Linux standard pour la gestion de diodes (la classe de matériel led).

Il suffit d'écrire la structure suivante :

static struct led_classdev toshiba_illumination_led = {

 .name = "toshiba::illumination",

 .brightness = LED_OFF,

 .max_brightness = 1,

 .brightness_set = toshiba_illumination_set,

 .brightness_get = toshiba_illumination_get,

};

et d'appeler la méthode d'enregistrement led_classdev_register...

Et TADA !!

Ça marche... Un dossier /sys/class/leds/toshiba::illumination apparaît, et une écriture dans le fichier brightness allume ou éteint les diodes !

"Conclusion"

Voilà voilà, je vous invite vraiment, quand vous avez un peu de compétence en C/assembleur, d'implémenter le support pour de tels gadgets si vous en avez. Ce n'est souvent pas très compliqué, et ça fera toujours plaisir à vous, l'un de vos proches, ou un utilisateurs quelque part dans le monde...

Dans le making off, vous avez échappé à l'utilisation du debuggueur avec modification des résultats des méthodes pour faire croire au programme que la matériel était présent, vous avez échappé aux essais avec un debuggueur noyau sous windows, vous n'avez pas vu non plus les appels au hasard des autres méthodes ACPI...

Quand j'aurai nettoyé le code et que j'enverrai un patch pour intégration au noyau, je ferai un journal pour que vous puissiez profiter du code, si cela peut vous servir...

Bon weekend à vous

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

