

Journal Importer des "issues" GitHub dans des "tickets" Trac

Posté par pulkomandy (site web personnel, Mastodon) le 30 septembre 2023 à 15:01.
Licence CC By‑SA.

Étiquettes :

	github

	migration

	bugtracker

	python

	auto-hébergement

	forge_logicielle

[image:]

Bon, je me suis laissé entraîner. Je savais que ça finirait mal. Il y a quelques années, j'ai ouvert un compte Github. J'en avais probablement besoin pour participer à un projet hébergé sur cette plateforme. Et puis j'ai commencé à y mettre mes propres projets, parce que c'était pratique de pouvoir créer un dépôt Git en 3 clics. Je me suis bientôt retrouvé avec plus de 100 projets sur Github.

Seulement voilà, Github, ce n'est pas un logiciel libre. Et en plus, maintenant ils se concentrent sur l'intelligence artificielle et plus sur les outils pour écrire du logiciel. Et en plus, ils ont rendu l'authentification à 2 facteurs bientôt obligatoire et j'ai pas envie de leur donner mon numéro de téléphone (surtout que j'ai eu des problèmes avec mon téléphone il y a quelques jours et c'était déjà assez pénible comme ça).

J'aurais pourtant dû le voir venir: j'avais déjà dû quitter Google Code Project Hosting ainsi que BerliOS il y a quelques années. Je m'étais mis en place un Trac et un Subversion sur mon serveur personnel pour héberger mes projets.

Ces derniers mois j'ai commencé à migrer quelques-uns de mes petits projets à nouveau sur mon propre serveur. J'ai remis Trac à jour (la version 1.6 vient de sortir il y a quelques jours, c'est la première version stable à supporter Python 3, mais j'utilisais déjà les versions 1.5 qui sont aussi en Python 3 depuis longtemps). J'avais aussi installé Gerrit pour pouvoir recevoir des patchs pour mes projets. Il ne reste plus qu'à déplacer les projets en essayant de ne pas perdre trop d'informations.

Migrer le dépôt Git est la partie facile: Git est un système décentralisé, on peut récupérer les commits, branches, tags, etc et les pousser ailleurs très facilement (avec l'option --mirror par exemple). Le problème, c'est tout le reste, c'est à dire dans le cas de GitHub, les pages de wiki et les "issues", qui sont l'endroit ou un peu tout l'historique de l'activité du projet est conservé: tous les bugs corrigés, les discussions sur comment implémenter une nouvelle fonctionnalité, etc.; et aussi le futur du projet: les bugs encore à corriger et les nouvelles fonctionalités à implémenter.

Étrangement, personne n'avait encore écrit de script pour faire cette migration. J'ai dû donc m'atteler à la tâche, en m'inspirant fortement d'un script destiné à migrer de Mantis vers Trac. Ce dernier n'avait été mis à jour ni pour Python 3, ni pour les changements d'APIs survenus dans les versions 1.0, 1.2, 1.4 et 1.6 de Trac. Le premier problème a été rapidement corrigé par 2to3, et le deuxième par une lecture de la documentation d'API et un changement assez répétitif sur le code.

Du côté de Github, l'interfaçage est plutôt simple avec une API REST exposant toutes les informations nécessaires. Du côté de Trac, il s'agit d'une API Python permettant, au choix, d'utiliser des classes fournissant une interface haut niveau, soit de manipuler directement la base de données de Trac à l'aide de requêtes SQL.

Au total, l'implémentation du script a demandé moins d'une journée (j'ai commencé hier soir et je termine aujourd'hui en début d'après-midi). Il me reste encore quelques petites choses à faire, mais je vais peut-être les faire à la main pour aller plus vite. Ainsi que finaliser la configuration du Trac pour le projet que je viens d'importer (avec un joli thème, un logo, la description du projet, etc).

En tout cas, si l'envie vous prend de quitter Github pour rejoindre Trac, le script est à votre disposition dans le wiki trac-hacks: https://trac-hacks.org/wiki/GithubImportScript

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars287065000avatar.jpg

