

Journal Un timelapse avec ffmpeg

Posté par purplepsycho le 19 novembre 2025 à 14:57.
Licence CC By‑SA.

Étiquettes :

	vidéo

	ffmpeg

	timelapse

	imagemagick

[image:]

Sommaire

	Timelapse

	1. Acquisition des images

	2. Génération des moyennes

	3. Génération des clips

	4. Concaténer les clips

	5. Accélérer la video

	6. Ajouter du son

J'ai eu besoin de faire un timelapse sur une longue période de vidéo (3 semaines). Pour ne pas trop me prendre la tête, j'ai utilisé ffmpeg et bash pour automatiser ce que je pouvais.

Je laisse cela ici, en espérant que ça puisse en aider certains (dont moi dans le futur).

Bonne lecture

Timelapse

Pour faire un joli timelapse, j'ai divisé le travail en sous taches :

	Acquérir des images,

	Moyenner les images acquises,

	Fusionner les moyennes en clips,

	Fusionner les clips en video,

	Accélérer la video,

	Ajouter du son.

1. Acquisition des images

On a un script qui enregistre bêtement des images, aussi vite que possible, mais pas trop quand même, au mieux 1 image par seconde.

C'est un script que je laisse tourner sur un serveur (enfin un PC jamais éteint)

#! /bin/bash

camera IP
IP=172.22.10.34

Errors and images counts
ERRCNT=0
CNT=0
Use another IP if asked
if [$# -eq 1]
then
 IP=$1
fi

Forever
while true
do
 # File to generate
 FILE="$(date "+%F_%H-%M-%S.jpg")"
 # File to store error
 OUT=$(mktemp)

 # increase counter
 CNT=$((CNT+1))
 # get one image thanks to ffmpeg
 # ! warning, here I integrated the credential in the url, it's not necessary on all camera...
 ffmpeg -y -i "rtsp://login:password@$IP/axis-media/media.amp" -vframes 1 "$FILE" 2> "$OUT"
 # Test for error
 if grep --quiet "error" "$OUT"; then
 # increase error count
 ERRCNT=$((ERRCNT+1))
 # Inform user
 echo -n -e "$(date +%T) Bad image, deleting. ($ERRCNT error(s) on $CNT)\r"
 remove image file
 rm "$FILE"
 fi

 # remove error file
 rm "$OUT"
done

2. Génération des moyennes

Ici, on va moyenner les images. On moyenne ensemble les images qui sont dans les 10 secondes.

C'est à dire, les images

	2025-12-31-12-00-01.jpg

	2025-12-31-12-00-02.jpg

	2025-12-31-12-00-05.jpg

	2025-12-31-12-00-07.jpg

	2025-12-31-12-00-09.jpg

Seront fusionnées dans le fichier 2025-12-31-12-00-0x.jpg

Ce script tourne sur le même serveur que le précédent.

#!/bin/bash

Directory to stores averages
mkdir -p averages

Forever
while true
 do
 # Finding all jpg files in current directory
 FILES=$(find . -maxdepth 1 -name "*jpg" -mmin +1)

 # Wait 10 seconds to be sure that all interval will be complete
 sleep 10

 # For each file...
 for i in $FILES; do
 # Ignore if file has already been processed
 if [! -e "$i"] ; then
 continue
 fi

 # Select one file
 FILE=$(basename "$i")

 # Create a regexp to select all files in the same 10 seconds interval (like 2025-12-30-12-5*.jpg)
 REGEXP=$(echo $FILE | sed 's/\(....-..-.._..-..-.\)./\1*/')
 # Destination file: (like 2025-12-30-12-5x.jpg)
 DESTFILE=$(echo $FILE | sed 's/\(....-..-.._..-..-.\)./\1x/')

 # create empty image list and temporary files
 IMAGELIST=
 CMD=$(mktemp)
 LIST=$(mktemp)

 # Generate list of image matching the regexp
 find . -maxdepth 1 -name "$REGEXP" > "$LIST"
 # Convert these images names to a list
 while IFS= read -r j; do
 IMAGELIST="$j $IMAGELIST"
 done < "$LIST"
 # prepare a imagemagick command to average them
 echo "convert -average $IMAGELIST averages/$DESTFILE" > "$CMD"
 chmod +x "$CMD"

 #execute the imagemagick command
 sh -c "$CMD"

 # cleanup
 rm "$CMD"
 rm "$LIST"
 rm $IMAGELIST

 done

 # wait 30 seconds, no rush
 sleep 30
done

3. Génération des clips

On a un paquet d'images, on peut les fusionner simplement dans un clip avec la commande ffmpeg -y -pattern_type glob -i "averages/*.jpg" clip.mp4, où, on peut générer un clip par heure, ce qui facilite grandement le montage derrière (dans mon cas, j'ai 3 semaines d'images)

Ce script ne tourne pas tout seul. Je le lance quand j'en ai besoin, ça peut être un peu long si ça fait longtemps que je l'ai pas fait tourner. Je pourrais l'automatiser, mais la flemme est plus forte.

#! /bin/sh
Check user called that program correctly
if [$# -ne 2] ; then
 echo "usage $(basename "$0") date hour"
 echo ""
 echo " date: yyyy-mm-dd format"
 echo " hour: 24 hour format"
 exit
fi

create destination directory
mkdir -p by-hour

make sur that morning hour start with a 0, to simplify sorting
HOUR=$(printf "%02d" $2)

ask ffmpeg to do its magic
ffmpeg -y -pattern_type glob -i "averages/$1_$HOUR*.jpg" "by-hour/$1_$2".mp4

4. Concaténer les clips

On a plein de petits clips qu'on va vouloir coller ensemble, pour cela, on les liste dans un fichier :

file 2025-11-18_11.mp4
file 2025-11-18_15.mp4
file 2025-11-19_10.mp4

Et on demande gentiement à ffmpeg de les coller entre eux

ffmpeg -y -f concat -i files.txt -c copy timelapse.mp4

5. Accélérer la video

À partir d'ici, j'ai rapatrier les clips qui m'intéressent sur mon poste.

Pour que mon timelapse soit pas trop long, j'ai eu besoin de l'accélérer. Pour cela, on utilise des commandes barbares:

Extract frames info
ffmpeg -y -i timelapse.mp4 -map 0:v -c:v copy -bsf:v h264_mp4toannexb raw.h264

Generate faster video (to match audio duration), here 62fps
ffmpeg -y -fflags +genpts -r 62 -i raw.h264 -c:v copy timelapse-fast.mp4

6. Ajouter du son

Un dernier truc à savoir quand on veut faire un film avec du son sans se prendre la tête, c'est d'utiliser le format mkv. Les autres conteneurs que j'ai testé (au moins mp4 et mov) sont plus délicats à utiliser.

ffmpeg -i timelapse.mp4 -i bruit.mp3 -c:v copy -c:a copy timelapse.mkv

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

