

Journal Débugger un problème de performance avec strace

Posté par raphj (site web personnel) le 01 septembre 2024 à 18:50.
Licence CC By‑SA.

Étiquettes :

	strace

	performance

	debugging

	nginx

[image:]

Sommaire

	
Appeler strace sur un processus existant
	--decode-fds pour avoir les noms de fichiers

	Lancer le processus avec strace pour un historique complet

	Filtrer les appels systèmes avec -e

	Le mystère reste malgré tout entier

	Épiphanie – regarder le bon fautif

Journal un peu rapide orienté debug de perf et découverte de strace.

J’héberge une instance privée d'Invidious. C’est un frontal alternatif pour Youtube qui permet notamment de suivre des chaînes sans avoir de compte Google, et d’accéder à Youtube avec du code libre. C’est pas mal, en attendant que tout le monde se mette à PeerTube.

Depuis des mois, il y avait une latence aléatoire au chargement des pages, des vidéos, de tout. Parfois tout s’affichait instantanément, et parfois, la galère, les choses mettaient plusieurs dizaines de secondes à charger. Frustrant. À force, cette perte de temps s’additionne.

Hier, et en fait à plusieurs reprises, je me suis dit que j’allais tracer les appels systèmes pour voir s’il y en a qui bloquent, et sur quoi. Par exemple :

	un échange avec le grand méchant Youtube qui aurait détecté mon utilisation de PeerTube et qui introduirait des lags pour faire chier

	une requête PostgreSQL lente

	un problème avec Redic

On peut faire ça avec strace. J’ai fait quelques découvertes sur ses capacités que je vais résumer ici.

Appeler strace sur un processus existant

C’est simple, il suffit d’appeler strace avec le PID du processus à tracer, comme ça :

sudo strace -p $(pidof invidious)

(l’utilisateur unix doit pouvoir utiliser ptrace pour avoir le droit d’inspecter des processus comme ça, je passe donc par root)

Ça ressemble à ça :

getpid() = 2096012
openat(AT_FDCWD, "/usr/lib/ssl/cert.pem", O_RDONLY) = 19
newfstatat(19, "", {st_mode=S_IFREG|0644, st_size=213777, …}, AT_EMPTY_PATH) = 0
read(19, "-----BEGIN CERTIFICATE-----\n…"…, 4096) = 4096
read(19, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"…, 4096) = 4096
…
read(19, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"…, 4096) = 785
read(19, "", 4096) = 0
close(19) = 0
newfstatat(AT_FDCWD, "/etc/nsswitch.conf", {st_mode=S_IFREG|0644, st_size=516, …}, 0) = 0
newfstatat(AT_FDCWD, "/etc/resolv.conf", {st_mode=S_IFREG|0644, st_size=624, …}, 0) = 0
openat(AT_FDCWD, "/etc/hosts", O_RDONLY|O_CLOEXEC) = 19
newfstatat(19, "", {st_mode=S_IFREG|0644, st_size=534, …}, AT_EMPTY_PATH) = 0
lseek(19, 0, SEEK_SET) = 0
read(19, "127.0.0.1 localhost\n\n127.0.1.1"…, 4096) = 534
read(19, "", 4096) = 0
close(19) = 0
socket(AF_INET, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, IPPROTO_IP) = 19
setsockopt(19, SOL_IP, IP_RECVERR, [1], 4) = 0
connect(19, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("192.168.1.1")}, 16) = 0
ppoll([{fd=19, events=POLLOUT}], 1, {tv_sec=0, tv_nsec=0}, NULL, 0) = 1 ([{fd=19, revents=POLLOUT}], left {tv_sec=0, tv_nsec=0})
sendmmsg(19, [{msg_hdr={msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="@K\1\0\0\1\0\0\0\0\0\0\1i\5ytimg\3com\0\0\1\0\1", iov_len=29}], msg_iovlen=1, msg_controllen=0, msg_flags=0}, msg_len=29}, {msg_hdr={msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="\273N\1\0\0\1\0\0\0\0\0\0\1i\5ytimg\3com\0\0\34\0\1", iov_len=29}], msg_iovlen=1, msg_controllen=0, msg_flags=0}, msg_len=29}], 2, MSG_NOSIGNAL) = 2
…
epoll_pwait(6,

J’ai un peu raccourci et censuré la sortie, mais le principe c’est qu’on voit les appels systèmes avec leur nom, les paramètres, la valeur de retour, c’est cool. Sur la dernière ligne, on voit que le processus attend quelque chose sur le descripteur de fichier numéro 6 ; epoll_pwait n’a pas encore retourné, donc la ligne n’est pas finie.

--decode-fds pour avoir les noms de fichiers

Bon, 6, ce n’est pas très parlant.

Premier réflexe : on pourrait écrire un outil qui analyse la sortie de strace et qui surveille qu’est-ce qu’on fait sur chaque descripteur, et des choses comme ça.

Mais première découverte : strace permet de décoder ces numéros et d’afficher des informations utiles comme le nom de fichier en question.

sudo strace --decode-fds -p $(pidof invidious) strace: Process 2096012 attached
epoll_pwait(6<anon_inode:[eventpoll]>, [], 32, 3637, NULL, 8) = 0
epoll_pwait(6<anon_inode:[eventpoll]>, [], 32, 5, NULL, 8) = 0
epoll_pwait(6<anon_inode:[eventpoll]>,

Bon, là, ça n’aide pas trop, mais quand on a affaire à des fichiers, ça rend immédiatement la lecture plus claire.

Lancer le processus avec strace pour un historique complet

Mais on peut vouloir suivre depuis le début pour voir quel numéro correspond à quoi, et avoir l’historique complet.

$ sudo systemctl invidious stop
$ cd /home/invidious/invidious
$ sudo -u invidious strace ./invidious

Filtrer les appels systèmes avec -e

Mais ça spamme à donf. Il se passe une quantité de bazar monstrueuse au démarrage d’un processus comme invidious. Alors, seconde découverte, strace est en fait capable de filtrer les appels systèmes qui nous intéressent :

sudo -u invidious strace --decode-fds -e desc,network ./invidious

Ici, je ne garde que les opérations sur les fichiers, et les opérations réseaux. En vrai, ça spamme encore beaucoup trop, mais je voulais montrer qu’on pouvait en mettre plusieurs. Ici, seules les opérations réseaux m’intéressent. On se référera au manuel pour avoir la liste des groupes d’appels systèmes sur lesquels on peut filtrer.

Petite astuce additionnelle : quand on utilise strace, ça peut être très pratique d’activer l’historique illimité de son émulateur de terminal.

Le mystère reste malgré tout entier

Malgré ces découvertes, je ne parviens pas à trouver la raison des latences. Rien de lisible dans la sortie de strace. Je suis sur le point d’abandonner et de me dire que je ne couperai pas à l’exploration de cette idée d’outil qui parse strace. On trouve des choses, mais un peu basiques.

Épiphanie – regarder le bon fautif

À ce moment, une illumination me vient, il me prend l’idée d’aller voir la configuration nginx, qui tourne devant Invidious.

Et en effet, elle est toute pourrie. Je retire du merdier laissé par une expérimentation, et tout se met à fonctionner impeccablement bien. Évidemment, c’est très peu satisfaisant de l’avoir découvert comme ça et pas par du debug, mais le problème ne venait pas d’Invidious. Je pouvais tracer tout ce que je pouvais, rien n’allait sortir. Au mieux, peut-être que j’aurais peut-être pu remarquer des paquets qui tardent à venir depuis nginx, mais je n’ai pas été assez fin pour le remarquer. Quand on a des hypothèses en tête, on ne voit pas forcément l’anguille sous la roche.

Mais donc la leçon à retenir, c’est : pour étudier un problème de perf, il faut déjà instrumenter le bon processus. Je ne me serais pas douté qu’un problème vienne d’nginx, ça marche très bien et je n’ai jamais eu de problème. Mais mal configuré, il peut faire n’importe quoi.

Mais bon, j’ai appris à mieux utiliser strace… :-)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

