

Journal Un langage de description de diagramme/figure

Posté par rewind (Mastodon) le 13 octobre 2012 à 19:37.
Licence CC By‑SA.

Étiquettes :

	dessin_vectoriel

	schéma

	ditaa

	svg

	diagramme

[image:]

Sommaire

	
Modèle de dessin

	
Premiers pas

	
Les problèmes
	
Forme relative ou forme absolue

	
Contour et remplissage

	
Conclusion

Je cherche à faire un langage de description de diagramme/figure qui soit à la fois simple à utiliser et puissant. Dans l'idéal, il serait possible de spécifier des formes simples et de les composer de manière à fabriquer des formes complexes. Sur le moyen terme, il serait possible d'utiliser des sortes de gestionnaire de layout (comme pour les interfaces graphiques) pour ne pas avoir à spécifier la position des formes directement mais de laisser le gestionnaire la calculer. Le but de ce journal est de faire état de mes recherches et de soulever quelques problèmes de conception auxquels je dois faire face.

Modèle de dessin

Pour le modèle de dessin, pas de problème, quasiment toutes les bibliothèques de dessin 2D utilisent le modèle PDF (lui-même hérité du modèle PS). Pour résumer, ce modèle permet de spécifier des formes et des chemins (path) puis, soit de dessiner le contour (stroke), soit de remplir la forme (fill). Diverses propriétés sont associées : la couleur, la largeur de la ligne, la manière de joindre les divers segments (line join), la manière de dessiner le bout des segments (line cap), la manière de remplir les chemins qui se croisent (fill rule), etc. Il est également possible de spécifier des transformations : translation, rotation, homothéties; ou alors directement en passant par une matrice de transformation.

On retrouve ce modèle notamment dans cairo, Skia (made in Google), Qt et certainement d'autres.

Il est donc naturel de s'appuyer sur ce modèle pour définir le langage. Tous les concepts sont déjà présents, le problème vient de la manière de les exprimer.

Premiers pas

J'ai réalisé un premier prototype simple pour me faire une idée. Je me suis inspiré de la syntaxe POV-Ray pour décrire mes objets, notamment les vecteurs et les couleurs. Pour l'instant, quand on veut dessiner une ligne rouge entre les points (10,10) et (30,30), voilà à quoi ça ressemble :

line { <10., 10.>, <30., 30.>
 pigment { rgb <1., 0., 0.> }
}

Facile, n'est-ce pas ? De même, quand on veut dessiner un polygone (ici, un triangle) à l'aide d'un chemin, on procède de la manière suivante :

polygon {
 path { <10., 10.>
 line_to <30., 10.>
 line_to <10., 30.>
 close
 }
}

Il est même possible de définir des variables pour faciliter les réutilisations :

set lw = 3.
set w = 10.
line { <0., 0.>, <w, w>
 line_width { lw }
}
line { <w, 0.>, <w, 0.>
 line_width { lw }
}

Les problèmes

Alors, où se situent les problèmes ?

Forme relative ou forme absolue

Actuellement, les formes et chemins sont spécifiés de manière absolue, c'est-à-dire que les coordonnées sont décrites de manière absolue. C'est conceptuellement le plus simple, mais je me dis qu'on pourrait faire autrement en spécifiant les formes de manière relative. Par exemple, plutôt que de spécifier une ligne par deux points, elle serait spécifiée par les coordonnées du vecteur (mathématique) correspondant, et par le point de départ du vecteur. Si je reprends mon premier exemple, on aurait quelque chose du genre :

line (<20., 20.>
 at <10., 10.>
}

Idem pour les chemins qui devraient être spécifié en déplacement relatif plutôt qu'absolu :

polygon {
 path {
 rel_line_to <20., 0.>
 rel_line_to <-20., -20.>
 close
 }
 at <10., 10.>
}

C'est plus compliqué à spécifier mais ça pourrait être plus flexible par la suite, quand on va composer les formes. Bref, je me pose encore la question : sur laquelle des deux méthodes miser ?

Contour et remplissage

Le second problème concerne les deux types de dessin qu'on peut faire : le contour d'une forme et le remplissage d'une forme. Actuellement, j'ai deux types d'objets distincts suivant qu'on veut remplir ou dessiner le contour : box (fill) et rectangle (stroke), disc (fill) et circle (stroke), polygon (fill) et polyline (stroke). C'est gênant quand on veut faire les deux à la fois, ça oblige à spécifier deux objets avec les mêmes coordonnées, ou pire avec le même chemin. Même si on imagine qu'il est possible de faire une variable avec un chemin, ça me semble légèrement redondant comme approche.

Dans les bibliothèques existantes, on a plusieurs approches. Pour cairo, on peut spécifier les propriétés, puis le chemin, et ensuite appeler cairo_{fill,stroke}_preserve qui va préserver le chemin pour le réutiliser. Quand on programme, c'est très pratique, mais dans un langage, ça paraît plus compliqué à mettre en œuvre. Dans Skia, le fait qu'on dessine un contour ou un remplissage ou les deux est déterminé par un flag. L'inconvénient, c'est que les propriétés sont partagés, notamment la couleur, donc il est impossible de dessiner un disque rouge avec un contour bleu. Dans Qt, on a le concept de crayon (QPen) et de brosse (QBrush). Grosso-modo, le crayon possède les propriétés pour le contour, et la brosse possède les propriétés pour le remplissage.

L'idée de Qt me plaît assez parce qu'elle divise le nombre d'objets par deux, mais qu'il faut alors spécifier à chaque fois un crayon et une brosse pour chaque objet. Par exemple, si je reprend l'exemple du triangle plus haut et que je veux le remplir de bleu et l'entourer en rouge :

polygon {
 path { <10.,10.>
 line_to <30., 10.>
 line_to <10., 30.>
 close
 }
 brush {
 pigment { rgb <0., 1., 0.> }
 }
 pen {
 pigment { rgb <1., 0., 0.> }
 }
}

D'où la question : y a-t-il un meilleur moyen de faire ?

Conclusion

J'en suis encore à l'exploration de solutions, et j'aimerais avoir des avis sur les problèmes soulevés, mais également sur la syntaxe. J'entrevois déjà d'autres problèmes, comme la composition des formes (mais là encore, PDF fournit un modèle), ou encore sur les transformations. Mais n'allons pas trop vite.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars274037000avatar.png

