

Journal Des "basheries"

Posté par rdhlnn le 29 novembre 2016 à 15:56.
Licence CC By‑SA.

Étiquettes :

	bash

	shell

	framasoft

[image:]

Sommaire

	Des raccourcis utiles

	La dernière commande

	Astuces au quotidien

	Toutdoux liste

	Le partage facile d'un dossier au sein d'un réseau

	A suivre

Salut,

Voici un journal qui répertorie les quelques raccourcis et commandes que j'ai découverts au fil du temps et de balades sur le net (blogs, forums, wiki, man bash, etc.). J'essaie de faire une liste ici de ceux qui me semblent vraiment utiles pour l'utilisation quotidienne du terminal par un utilisateur lambda. Je fais partie de cette catégorie, je ne suis ni un programmeur, ni un utilisateur averti, je fais de la recherche en sciences humaines et sociales et de l'édition. Aujourd'hui, je n'utilise quasiment plus qu'un navigateur web et un terminal (vim, mutt, pandoc, etc.). Dans mon domaine, on voit de plus en plus de gens s'intéresser à des outils comme vim, mais ils sont rebutés par l'utilisation du terminal lui-même (avant même celle de vim). Voilà donc quelques astuces qui facilitent grandement l'utilisation d'un terminal utilisant le shell unix bash.

Des raccourcis utiles

	
Ctrl + a : Pour aller au début de la ligne

	
Ctrl + e : Pour aller à la fin de la ligne

	
Ctrl + b : Pour se déplacer d'un caractère vers l'arrière (flèche gauche)

	
Ctrl + f : Pour se déplacer d'un caractère vers l'avant (flèche droite)

	
Alt + b : Pour se déplacer d'un mot vers l'arrière

	
Alt + f : Pour se déplacer d'un mot vers l'avant

	Ctrl + xx : Pour passer de la position du curseur au début de la ligne et revenir à la position où se trouvait le curseur

	TAB : Pour compléter automatiquement les noms de fichiers/dossiers/commandes

	Ctrl + d : Pour effacer le caractère sur lequel se trouve le curseur

	Ctrl + h : Pour effacer le caractère précédant le curseur (la fonction classique du retour arrière)

	Alt + d : Pour effacer le mot suivant le curseur

	Alt + retour arrière : Pour effacer le mot précédant le curseur

	Ctrl + l : Pour nettoyer l'écran (l'équivalent de la commande clear)

	Alt + t : Pour échanger la place du mot où se trouve le curseur avec celui le précédant

	Ctrl + t : Pour échanger la place des deux caractères précédant le curseur

	Ctrl + w : Pour couper le mot précédant le curseur

	Ctrl + k : Pour couper la partie de la ligne suivant le curseur

	Ctrl + u : Pour couper la partie de la ligne précédant le curseur

	Ctrl + y : Pour coller la dernière chose coupée

	Ctrl + _ : Pour annuler la dernière modification (undo)

	Ctrl + j : Pour créer une nouvelle ligne

	Ctrl + c : Pour arrêter la commande en cours et créer aussi une nouvelle ligne

	Ctrl + r : Pour rechercher une commande précédente dans l'historique

	Ctrl + g : Pour quitter la recherche dans l'historique

	Ctrl + p : Commande précédente (flèche haut)

	Ctrl + n : Commande suivante (flèche bas)

	Ctrl + x + e : Pour lancer un traitement de texte (nano par ex.) pour écrire une longue commande.

La dernière commande

	!! : Pour répéter la dernière commande

Notamment très utile quand on oublie de mettre sudo avant une commande.
$ apt install apt (qui donne une erreur parce qu'on a oublié sudo)
$ sudo !!

	alt + . : Pour ajouter le dernier argument de la dernière commande
$ vim todo.txt
$ mv [alt + .]todo.txt ~/tmp

	!$: Egalement utile pour ajouter le dernier argument de la dernière commande

	!* : Pour reproduire tous les arguments de la dernière commande

C'est utile si vous faites une erreur du genre :
$ vim cd ~/downloads
$!*

ce qui donnera
$ cd ~/downloads

	!foo : Pour réutiliser la dernière commande en commençant par foo (on peut aussi faire foo !!)

	!:- : Pour réutiliser la dernière commande sans le dernier argument

Un exemple:
$ ping -c 3 linuxfr.org
$!:- framasoft.org

Ce qui donnera
$ ping -c 3 framasoft.org

	A ces commandes, vous pouvez ajouter à la fin :p (par ex. !*:p) pour afficher la commande sans qu'elle se lance.

Astuces au quotidien

	$ cp ~/.vimrc{,.old}

Qui correspond à
$ cp ~/.vimrc ~/.vimrc.old

Ca marche aussi pour supprimer une extension par ex. pour transformer "blabla.txt" en "blabla"
$ mv blabla{.txt,}

Ou pour utiliser l'extension markdown à la place du .txt :
$ mv blabla{.txt,.md}

	..

Qui correspond au dossier parent de celui dans lequel on se trouve. Par ex. : cd .. emmène au dossier parent de celui dans lequel on se trouve. Cela peut aussi être utile pour copier un fichier cp foo.txt ..

	.

Cela correspond au dossier dans lequel on se trouve. Par ex.: cp ~/downloads/foo.txt .

	cd -

Qui emmène au dernier dossier dans lequel on se trouvait

	En cas de coquille, on peut corriger la commande précédente erronée ainsi:
mvi todo.txt
^mvi^vim

	Pour appliquer une action (supprimer, copier, etc.) sur de nombreux fichiers qui ont des noms similaires, on peut utiliser l'astérisque. Par ex.:
$ ls
Fichier1.txt
Fichier2.txt
Fichier3.txt
Fichier4.txt
$ rm Fichier* (cela supprimera tous les fichiers commençant par "Fichier")

ou
$ rm *.txt (cela supprimera tous les fichiers ayant l'extension ".txt")

	Pour renommer rapidement une série de fichiers, on peut utiliser rename ainsi :
$ ls
Fichier1.txt
Fichier2.txt
Fichier3.txt
Fichier4.txt
$ rename 's/Fichier/texte/' *.txt
$ ls
texte1.txt
texte2.txt
texte3.txt
texte4.txt

	Pour changer les extensions de plusieurs fichiers (en utilisant toujours rename, il est possible d'utiliser d'autres méthodes bien évidemment, avec find par ex.) :
rename 's/\.txt$/\.md/' *.txt

	ls -thor

Pour invoquer le pouvoir du marteau ! Et accessoirement lister de façon complète et lisible les fichiers d'un dossier en fonction de leur date de modification (de la plus ancienne à la plus récente). Il n'y aura pas les fichiers cachés dans la liste. Pour cela il faut invoquer les écritures saintes ls -torah.

	Pour supprimer tous les fichiers dans un dossier sauf un type de fichier (pdf et zip par ex.)
$ rm !(*.pdf|*.zip)

Toutdoux liste

Une commande utile (un peu dangereuse) si vous maintenez un fichier ~/faire.txt (le fameux todo.txt, que je maintiens personnellement selon une méthode "Getting things done" à ma sauce). Je maintiens aussi un fichier ~/lecture.txt (le sujet de l'exemple ci-dessous) dans lequel j'ai une liste de livres/articles à lire (utile pour mon boulot, notamment avant de me rendre à la bibliothèque).

Pour ajouter une ligne à un fichier
$ echo "- Luciano Floridi, the fourth revolution, Oxford University Press, 2014" >> ~/lecture.txt

Cela ajoute une ligne à la fin de ce fichier contenant ce qui se trouve entre guillemets (en passant cet auteur peut vous intéresser).

C'est une méthode un peu dangereuse, parce que si on ne met qu'un ">" à la place de 2 ">", on écrase le fichier.

Je peux donc lancer rapidement un terminal (j'ai un raccourci pour cela) et faire un less lecture.txt pour voir la totalité de la liste.

Je peux aussi faire un head -5 lecture.txt pour afficher les 5 premières lignes, ou les 5 dernières avec tail -5 lecture.txt.

Mais encore une fois, attention à ne pas faire $ echo "blabla" > lecture.txt ! Cela supprimera le contenu du fichier et ne laissera que "blabla".

Le partage facile d'un dossier au sein d'un réseau

Pour un partage facile d'un dossier avec une personne utilisant le même réseau, on peut lancer une commande créant un serveur depuis le dossier à partager :
python3 -m http.server

Ca fonctionne aussi avec python2 : python -m SimpleHTTPServer

Pour préciser le port il suffit d'ajouter le numéro à la fin de la commande : python3 -m http.server 8042

Et d'autres langages peuvent faire la même chose bien sûr

Avec ruby par ex.:
ruby -run -e httpd . (le port sera indiqué au lancement de la commande mais c'est possible de le préciser avec -p par ex.: ruby -run -e httpd . -p 8042)

A suivre

Je m'attarde ici sur bash, mais cela devrait fonctionner mosso grodo avec les autres shell aussi (zsh notamment). Et je vise ici les astuces qui ne nécessitent pas de modifier .bashrc. Par ex., j'utilise certaines modifications de mon .bashrc comme :

alias ll='ls -alF'

alias la='ls -A'

alias l='ls -CF'

Quelques autres idées me viennent pour de futurs journaux, si ça vous intéresse : 1) un journal sur bashrc pour rendre la vie de l'utilisateur lambda plus facile 2) un journal sur un vimrc pour "non-programmeur", qui souhaite utiliser vim comme traitement de texte principalement 3) un journal sur des scripts bash utiles au quotidien pour un utilisateur lambda 4) un journal sur une automatisation (évitant notamment le danger du ">", faisant des sauvegardes, etc.) de ma liste de tâches. Il existe de nombreux programmes "todo list", mais je n'en ai trouvé aucun qui me satisfasse entièrement.

Enfin… A suivre…

Je vous laisse aussi ajouter d'autres raccourcis, commandes et astuces qui peuvent être utiles à un utilisateur standard selon vous (s'il y a des fautes, n'hésitez pas non plus).

Cette liste n'est vraiment pas exhaustive. Elle représente ce que j'utilise le plus. Il y a de nombreux autres raccourcis et astuces sur la toile.

Bonne bidouille !

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

