

Journal Assurer la sécurité informatique sur le modèle de la sécurité alimentaire

Posté par Samuel (site web personnel) le 02 février 2021 à 08:53.
Licence CC By‑SA.

Étiquettes :

	dolibarr

	postgresql

	sécurité

	flatpak

[image:]

Sommaire

	Liste des ingrédients

	Dates limites

	Les objectifs

En regardant ce qui permet aux attaquants de réussir à pénétrer ou altérer des systèmes informatiques, on constate qu'une des causes principales est l'utilisation de logiciels ou technologies obsolètes. Nous, développeurs et administrateurs, savons identifier les outils trop vieux et plus assez sécurisés, donc dangereux, mais cette culture est difficilement partagée avec les utilisateurs et décideurs.

Pour pallier à ce problème, je propose qu'on se mette à utiliser deux outils simples et efficaces en matière de sécurité alimentaire :

	les dates de péremption

	la liste des ingrédients

Liste des ingrédients

Tous les logiciels, services et outils que nous proposons sont constitués par l'assemblage de composants plus simples, plus génériques :

	un logiciel "bureau" repose a minima sur un noyau et une architecture et/ou un runtime (jvm, bash…). Il est écrit dans un langage spécifique et, le plus souvent, dépend de composants tiers (bibliothèques, qu'elles soient partagées au niveau du système ou embarquées dans le binaire).

	un service web simple repose, côté serveur, sur un OS, un serveur web, le plus souvent un interpréteur (PHP, Python,…) et une base de données, quelle que soit sa forme. Côté client, ça repose sur un navigateur et souvent un paquet de dépendances diverses (JS, CSS) gérées par un gestionnaire de dépendances (bower, puis npm…)

	un service plus complexe peut être constitué de containers ou de machines virtuelles, orchestrés par un outil spécifique (docker-compose puis, à l'échelle du dessus, kubernetes, helm…).

	un objet connecté repose sur un firmware et là aussi, des dépendances logicielles ou logiques (protocoles).

Bref, tout ce que nous produisons, mettons en service, maintenons est composé de briques plus petites. Et il suffit qu'une de ces briques soit sujette à une faille pour que la sécurité de l'ensemble soit compromise, de la même manière qu'il suffit qu'un des ingrédients soit pourri pour que mon hachis parmentier devienne impropre à la consommation.

D'où la proposition suivante : communiquer avec la description du produit la liste de ses ingrédients. Il ne s'agit pas de simplement publier le code source (on le fait déjà), mais d'afficher une notice assez courte pour être lue et assez précise pour identifier les principaux composants et risques de sécurité associés, en ajoutant un lien vers la page "durée de vie" de chaque composant si elle existe ou, à défaut, vers la liste des versions dudit logiciel.

Exemples (fictifs) :

- org.gnome.Lollypop-1.4.15 : Gstreamer 1.18, gnome 3.38, plate-forme freedesktop 20.08

- dolicloud : Dolibarr 12.0, Debian 10 Buster (Apache 2.4.38, PHP 7.3, mariadb 10.3)

- gitlab (image docker) : gitlab-ce 13.5.7, docker engine, ubuntu 16.04, postgresql, redis

C'est assez proche de la liste des dépendances d'un logiciel, présente dans les métadonnées des paquets binaires (.flatpak, .rpm, .deb, dockerfile…), mais filtrée pour ne garder que ce qui est significatif et ordonnée pour mettre en avant les composants les plus importants.

Dates limites

En Europe, selon les produits, deux dates peuvent être indiquées :

	date limite de consommation, après laquelle le produit ne doit plus être consommé (viande,…)

	date limite d'utilisation optimale, après laquelle le produit peut perdre certaines de ses qualités mais peut, la plupart du temps, être consommé sans danger.

On peut appliquer les mêmes concepts pour les logiciels et systèmes :

	la date limite de consommation est la date de fin du support du produit ou la date la plus courte parmi celles de ses ingrédients

	la date limite d'utilisation optimale peut correspondre à la durée qui sépare deux versions (elle n'a de sens que quand plusieurs versions du logiciel ou de ses dépendances sont maintenues en parallèle).

Ces notions existent déjà et sont utilisées, notamment pour les systèmes d'exploitation ("date de fin de vie" ou de "fin de support étendu"). Je propose ici de généraliser la définition de ces concepts à tous nos projets informatiques mais aussi d'afficher cette information de façon plus visible pour l'utilisateur final : dès la page de téléchargement ou dans le corps même de l'application. C'est ce qu'avait fait Jamie Zawinski sous une forme assez radicale pour xscreensaver par exemple.

Ces dates se déduisent assez mécaniquement de la liste des ingrédients : le produit devient nécessairement dangereux à partir du moment où l'une de ses dépendances n'est plus à jour ou plus maintenue. Il n'est pas toujours évident de connaître la durée du support pour telle ou telle bibliothèque ou logiciel, mais observer l'historique des versions permet souvent d'avoir une idée.

Les objectifs

Généraliser l'affichage de ces indications permettrait :

- de responsabiliser les utilisateurs/clients vis-à-vis des outils qu'ils déploient, en les informant clairement des limites temporelles de validité

- d'en finir avec l'idée que déployer un logiciel ou un outil serait un investissement "one-shot" : ce sont des coûts récurrents et il faut planifier (budgéter !) la maintenance dès la mise en place

- d'en finir avec le "deploy&forget" et les applications "legacy" qui tournent dans le même état depuis des années, avec d'énormes trous de sécurité sans que personne ne s'en occupe

- d'encourager les développeurs/intégrateurs à s'appuyer sur des outils éprouvés et maintenus sur du long terme plutôt que sur des technologies bleeding-edge qui seront abandonnées très vite, ou à s'engager à maintenir ces outils s'ils sont abandonnés par leurs concepteurs.

Ce journal est un appel à commentaires : qu'en pensez-vous ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars933044000avatar.png

