

Journal D-POAF : une approche "proof-driven" pour gouverner des systèmes IA, comparaison avec Agile et SAFe

Posté par SaraIhsine le 31 janvier 2026 à 13:05.
Licence CC By‑SA.

Étiquettes :

	méthodologie

	intelligence_artificielle

	architecture

	gouvernance

	devops

	open_source

[image:]

Sommaire

	Agile et SAFe suffisent-ils pour gouverner des systèmes IA critiques ?

	Où Agile marche très bien… et où il montre ses limites

	SAFe : Agile à grande échelle… mais toujours centré livraison

	Pourquoi l'IA change vraiment la donne

	L’idée derrière D-POAF

	Exemple concret (très simplifié)

	Comparaison rapide

	Ce qu’on a observé sur le terrain

	Pour ceux que ça intéresse

	Questions ouvertes

Agile et SAFe suffisent-ils pour gouverner des systèmes IA critiques ?

Ces dernières années, on a beaucoup appris à livrer du logiciel vite.

Scrum, Kanban, CI/CD, DevOps…

Puis, quand les équipes ont grossi, SAFe, LeSS, Spotify model, etc.

Franchement, sur des produits web "classiques", ça marche plutôt bien :

on itère, on déploie souvent, on corrige vite.

Mais depuis quelque temps, en travaillant sur des projets intégrant de l’IA (modèles de décision, scoring, automatisation métier), on s’est retrouvé face à un problème que ni Agile ni SAFe ne couvraient vraiment :

livrer vite ne suffit plus, il faut aussi prouver.

Prouver que ça marche.

Prouver que ça apporte de la valeur.

Prouver que c’est fiable dans le temps.

Et surtout : pouvoir expliquer qui a décidé quoi, et pourquoi.

Bref : auditabilité, traçabilité, responsabilité.

C’est ce constat qui nous a amenés à expérimenter une approche plus "proof-driven", que nous avons formalisée dans un cadre méthodologique open source appelé D-POAF (Decentralized Proof-Oriented AI Framework).

Je partage ici un retour d’expérience et une comparaison avec Agile et SAFe, histoire d’ouvrir la discussion.

Où Agile marche très bien… et où il montre ses limites

Je précise : je ne tape pas sur Agile.

Pour des équipes petites à moyennes, c’est excellent pour :

- itérer vite

- réduire le gaspillage

- rester proche du besoin

- éviter la doc inutile

Mais Agile est surtout orienté flux de livraison.

Une user story passe en Done parce que :

- le code compile

- les tests passent

- le PO valide

Très bien.

Mais si on pose des questions comme :

- peut-on démontrer objectivement la valeur produite ?

- peut-on tracer toutes les décisions importantes ?

- peut-on auditer le système 6 mois plus tard ?

- qui est responsable si le modèle dérive ou discrimine ?

… Agile n’a pas vraiment de réponse native.

Ce n’est pas un défaut : ce n’était juste pas son objectif.

SAFe : Agile à grande échelle… mais toujours centré livraison

Avec plusieurs centaines de personnes, Agile "pur" casse un peu.

Donc arrive SAFe, proposé par Scaled Agile, qui ajoute :

- coordination multi-équipes

- planning trimestriel (PI planning)

- gouvernance portefeuille

- reporting

- gestion des dépendances

Ça aide clairement à organiser le bazar.

Mais au final, ça reste :

- très process

- très organisationnel

- très déclaratif

On a plus de tableaux, plus de rôles, plus de cérémonies…

mais pas forcément plus de preuves vérifiables côté technique.

On sait qui fait quoi.

On sait moins ce qui est réellement démontré.

Pour de l’IT classique, ça passe.

Pour de l'IA critique (fraude, santé, décision automatique, conformité réglementaire), ça commence à coincer.

Pourquoi l'IA change vraiment la donne

Avec du code classique, le comportement est déterministe :

même entrée → même sortie.

Avec l'IA/ML :

- le comportement dépend des données

- les données évoluent

- le modèle dérive (drift)

- la performance peut chuter silencieusement

- les impacts peuvent être juridiques ou éthiques

Du coup la question n'est plus seulement :

"est-ce que ça marche aujourd’hui ?"

mais plutôt :

"pouvons-nous démontrer que ça marche, que ça reste fiable, et que quelqu’un en assume la responsabilité ?"

Et là, les méthodes centrées uniquement sur la vélocité montrent leurs limites.

L’idée derrière D-POAF

D-POAF n’est ni un outil, ni une librairie, ni un "framework de code".

C’est plutôt un cadre méthodologique.

L’idée de base est simple :

chaque étape du cycle de vie doit produire des preuves vérifiables.

On distingue par exemple trois types de preuves :

	
Proof of Delivery (PoD) : l’artefact existe vraiment (build, modèle, doc, etc.)

	
Proof of Value (PoV) : il apporte la valeur attendue (métriques métier mesurées)

	
Proof of Reliability (PoR) : il reste fiable dans le temps (monitoring, drift, incidents)

Si on n’a pas de preuve tangible… ce n’est pas vraiment "done".

Autre point important :

la gouvernance n’est pas "au-dessus", elle est intégrée au flux.

Chaque décision significative doit être :

- tracée

- justifiée

- attribuée à un responsable humain

Même si une IA participe à l’exécution.

Exemple concret (très simplifié)

Prenons un modèle de détection de fraude.

Approche classique :

- on entraîne

- on déploie

- on regarde la précision

- on espère que ça tient

Approche proof-driven :

- PoD : version du modèle + dataset versionné + hash

- PoV : réduction mesurée du taux de fraude réel

- PoR : monitoring drift + alertes + seuils + réévaluations périodiques

- décisions documentées : qui valide le déploiement, sur quels critères ?

Ça paraît du bon sens.

Mais dans la pratique, ce n’est presque jamais formalisé proprement.

Comparaison rapide

	Aspect
	Agile
	SAFe
	D-POAF

	Focus principal
	vitesse
	coordination
	preuve & gouvernance

	Orientation
	itération
	organisation
	traçabilité

	Gouvernance
	minimale
	managériale
	intégrée au flux

	Auditabilité
	faible
	documentaire
	vérifiable

	IA critique
	partiel
	partiel
	natif

L’idée n’est pas de remplacer Agile ou SAFe.

Plutôt de compléter ce qu’ils ne couvrent pas :

la dimension assurance / preuve / responsabilité.

Ce qu’on a observé sur le terrain

Quelques effets intéressants :

	discussions plus factuelles (moins d’opinions, plus de métriques)

	audits beaucoup plus simples

	décisions mieux assumées

	meilleure compréhension des risques

Et côté négatif :

- plus de rigueur

- plus de discipline

- impossible de "faire confiance au process" sans preuves

Bref, c’est moins confortable… mais plus robuste.

Pour ceux que ça intéresse

On a documenté tout ça en open source :

- spécification

- guide méthodologique

- Map conceptuelle

- terminologie

- templates

Ressources :

- https://d-poaf.org/d-poaf-framework-map/

- https://github.com/INOVIONIX/D-POAF

Ce n’est pas une méthode miracle, juste une tentative d’adresser un angle mort qu’on rencontrait souvent sur des projets IA.

Questions ouvertes

Je suis surtout preneuse de retours critiques :

	est-ce que ça vous paraît trop lourd / bureaucratique ?

	redondant avec ISO/ITIL/DevOps existants ?

	utile uniquement en contexte réglementé ?

	ou au contraire pertinent plus largement ?

Curieuse d’avoir vos avis et contre-exemples.

EPUB/imageslogoslinuxfr2_logo-frozen.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

