

Journal [C++14] Expressions template pour les nuls

Posté par serge_sans_paille (site web personnel) le 31 mai 2016 à 10:24.
Licence CC By‑SA.

Étiquettes :

	c++14

	optimisation

	apprendre_à_coder

	c++

	c++-templates

[image:]

Sommaire

	
Expression Templates pour les nuls
	Mais de quoi zy parle

	Expressions template à la sauce C++14

	Performance

	Répéter, c'est apprendre

Expression Templates pour les nuls

Après un contact prolongé avec Joël Falcou, et pas mal de nœuds aux cerveaux pour arriver à émuler le comportement du broadcasting de Numpy avec des expression templates dans Pythran, j'ai eu l'envie soudaine, un peu folle peut-être, de réécrire un moteur d'expressions template en C++14, mais pour faire simple et didactique.

Mais de quoi zy parle

Les expressions templates sont une maintenant assez vieille technique de C++ qui permet par exemple d'éviter de créer des objets intermédiaires lourds quand on calcule sur des tableaux en utilisant des expressions complexes.

Par exemple, pour le type std::vector<double>, si on surcharge naïvement (et de façon fort risquée, pas touche aux conteneurs de la lib standard comme ça) les opérateurs +, * etc avec un code du genre :

std::vector<double> operator+(std::vector<double> const& left, std::vector<double> const& right) {
 assert(left.size() == right.size() && "same size");
 std::vector<double> out(left.size());
 std::transform(left.begin(), left.end(), right.begin(), out.begin(),
 std::plus<double>());
 return out;
}

et bien l'évaluation d'une expression du genre a + b * c va créer un tableau inutile (le résultat de b * c) et la move semantic ne nous sauve pas totalement. Et on va faire deux boucles, une par opération.

Avec les expressions template, on va plutôt écrire :

add<std::vector<double>, std::vector<double>> operator+(std::vector<double> const& left, std::vector<double> const& right) {
 return {left, right};
}

Avec :

template<typename L, typename R>
struct add {
 L const& left_;
 R const& right_;
 add(L const& left, R const& right) : left-(left), right_(right) {}
 // ...
};

Ce qui nous donnera comme type de retour de l'expression a + b * c :

add<std::vector<double>,
 mul<std::vector<double>,
 std::vector<double>
 >
 >

En ajoutant un opérateur [] aux types add<...> et mul<...> qui fait suivre l'appel aux fils, et une fonction membre size() qui renvoie, par exemple, la plus petite des tailles des deux fils :

template<typename L, typename R>
struct add {
 L const& left_;
 R const& right_;
 add(L const& left, R const& right) : left-(left), right_(right) {}
 auto operator[](size_t i) const { return left_[i] + right_[i]; }
 auto size() const { return std::min(left_.size(), right_.size(); }
};

on peut alors écrire le code bâtard mais néanmoins relativement facile à comprendre :

auto expr = a + b * c;
auto n = expr.size();
std::vector<double> res(n);
for(size_t i = 0; i < n; ++i)
 res[i] = expr[i];

Et voilà, on a une unique boucle, pas de tableau intermédiaire, c'est la fête et vive les expressions template. Cette technique est très largement utilisée :

	
GMP (pour le binding c++)

	NT2

	Eigen

	…

Mais elle est assez lourde à mettre en œuvre avec les outils pre-C++11. Je vous propose une solution que je croyais innovante, mais après discussion avec mon mentor sus-nommé, elle n'est qu'ingénieuse, ce qui est somme toute déjà pas mal.

Expressions template à la sauce C++14

Le parcours de l'arbre d'expression de bas en haut à coup d'appels récursifs, ça rappelle fury le design pattern visitor. C'est d'ailleurs une des options proposées par Boost.Proto, le gros pavé pour ceux qui aiment manger des expressions template avec de la crème le matin.

Du coup, proposition didactique (pleins de détails et optimisations possibles sont écartés pour la clarté du propos) : on va associer à chaque type de nœud de notre arbre un tag (une structure vide, un type) et une fonction générique dont le but sera de lancer la mécanique de parcours de l'arbre. Exemple :

struct add_tag {};
template<class A, class B>
auto add(A&& a, B&& b) {
 return [=](auto visitor) { return visitor(add_tag{}, a(visitor), b(visitor));};
 }

Bon ça parait un peu mystérieux comme ça, le gain en clarté n'est pas (clair ?) évident, mais on renvoie juste, quand on fait appel à la fonction add, une fonction générique capable d'appliquer un visitor sur les fils, de bas en haut.

On peut faire la même chose pour les feuilles de l'arbre, ici en distinguant les références vers des objets complexes et les constantes :

struct cst_tag {};
template<class T>
auto cst(T expr) {
 return [=](auto visitor) { return visitor(cst_tag{}, expr); };
}

struct ref_tag {};
template<class T>
auto ref(T& expr) {
 return [&](auto visitor) { return visitor(ref_tag{}, expr); };
}

Ça fait peu ou prou la même chose, mais avec un tag différent.

Maintenant que la mécanique est en place, on peut code de façon élégante nos visiteurs ! Par exemple pour obtenir le i-ème élément:

struct evaluator {
 evaluator(size_t i) : i_(i) {}

 template<class T>
 auto operator()(lazy::cst_tag, T c) { return c; }

 template<class T>
 auto operator()(lazy::ref_tag, T& r) { return r[i_]; }

 template<class A, class B>
 auto operator()(lazy::mul_tag, A a, B b) { return a * b; }

 template<class A, class B>
 auto operator()(lazy::add_tag, A a, B b) { return a + b; }

 private:
 size_t i_;
};

On utilise le tag pour spécialiser l'appel et déterminer le nœud à visiter. L'appel se fait simplement par :

auto expr = add(cst(12), mul(ref(a), ref(b)));
auto expr_0 = expr(evaluator(0));

On peut même spécifier un comportement par défaut, en jouant sur l'ordre de résolution des surcharges :

struct size {

 template<class T>
 auto operator()(lazy::cst_tag, T c) { return std::numeric_limits<size_t>::max(); }

 template<class T>
 auto operator()(lazy::ref_tag, T& r) { return r.size(); }

 template<class T, class A, class B>
 auto operator()(T, A a, B b) { return std::min(a, b); }

};

À la différence de la première approche, plus besoin de modifier les types proxy add, mul etc. On peut mettre toute la logique à un endroit, et l'étendre de manière non intrusive. Au final, si on sait vouloir stocker notre expression finale dans un std::vector<...>, on peut même écrire de façon assez élégante :

template<class E>
auto eval(E const & expr) {
 size_t n = expr(size());
 std::vector<decltype(expr(evaluator(0)))> res(n);
 for(size_t i = 0; i < n; ++i)
 res[i] = expr(evaluator(i));
 return res;
}

qui fait le bonheur des petits et des grands :

auto expr = add(cst(12), mul(ref(a), ref(b)));
auto evaluated = eval(expr);

Performance

Un petit coup de clang++ -std=c++14 -Ofast -march=native sur un code utilisant l'expression précédente a fait apparaitre cette séquence d'assembleur:

400ab0: c4 c1 7a 6f 0c 1e vmovdqu (%r14,%rbx,1),%xmm1
400ab6: c4 c1 7a 6f 54 1e 10 vmovdqu 0x10(%r14,%rbx,1),%xmm2
400abd: c4 c1 7a 6f 5c 1e 20 vmovdqu 0x20(%r14,%rbx,1),%xmm3
400ac4: c4 c1 7a 6f 64 1e 30 vmovdqu 0x30(%r14,%rbx,1),%xmm4
400acb: c4 c2 71 40 0c 1f vpmulld (%r15,%rbx,1),%xmm1,%xmm1
400ad1: c4 c2 69 40 54 1f 10 vpmulld 0x10(%r15,%rbx,1),%xmm2,%xmm2
400ad8: c4 c2 61 40 5c 1f 20 vpmulld 0x20(%r15,%rbx,1),%xmm3,%xmm3
400adf: c4 c2 59 40 64 1f 30 vpmulld 0x30(%r15,%rbx,1),%xmm4,%xmm4
400ae6: c5 f1 fe c8 vpaddd %xmm0,%xmm1,%xmm1
400aea: c5 e9 fe d0 vpaddd %xmm0,%xmm2,%xmm2
400aee: c5 e1 fe d8 vpaddd %xmm0,%xmm3,%xmm3
400af2: c5 d9 fe e0 vpaddd %xmm0,%xmm4,%xmm4
400af6: c4 c1 7a 7f 4c 1d 00 vmovdqu %xmm1,0x0(%r13,%rbx,1)
400afd: c4 c1 7a 7f 54 1d 10 vmovdqu %xmm2,0x10(%r13,%rbx,1)
400b04: c4 c1 7a 7f 5c 1d 20 vmovdqu %xmm3,0x20(%r13,%rbx,1)
400b0b: c4 c1 7a 7f 64 1d 30 vmovdqu %xmm4,0x30(%r13,%rbx,1)
400b12: 48 83 c3 40 add $0x40,%rbx
400b16: 48 81 fb 00 03 00 00 cmp $0x300,%rbx
400b1d: 75 91 jne 400ab0 <main+0x70>

Ce qui est franchement cool : le code a été vectorisé, déroulé et il est… vachement propre. On retrouve bien là le principe de costless abstraction si cher au C++. J'♥.

Répéter, c'est apprendre

La petite lib que j'ai écrite pour tester ces idées n'ira pas sur le grand ninternet, c'était juste pour le lulz. Et puis après coup, Il m'a pointé vers https://isocpp.org/blog/2016/05/cppcon-2015-expression-templates-past-present-future-joel-falcou qui contient bien plus de contenu que ce maigre article, qui ne sera finalement qu'une petite introduction et qui aura eu l'avantage de me forcer de coucher sur le clavier (avant d'aller moi-même me coucher) mes idées. Et n'est-ce pas ça, le but d'un journal ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

