

Journal Jouons avec le ``switch`` et C++17


Posté par serge_sans_paille (site web personnel) le 05 mars 2018 à 22:47.
Licence CC By‑SA.

Étiquettes :

	c++17











[image: ]



Et non, ceci n'est pas un journal sur la switch, juste un partage rapide et amusé d'une version alambiquée mais qui fait tourner la tête (comme beaucoup de choses sortant d'un alambic, n'est ce pas ?):


template<unsigned N>
__attribute__((noinline)) void stuff()  {}

// manual switch
void manual_switch(int i) {
    switch(i) {
        case 0: return stuff<0>();
        case 1: return stuff<1>();
        case 2: return stuff<2>();
        case 3: return stuff<3>();
        default: return stuff<100>();
    }
}


ce code a l'air de rien. On peut imaginer que stuff ait une bonne raison d'être template, et le switch est là pour passer du monde dynamique au monde statique.


Je vous propose une version équivalente en C++17 :


namespace bits {
template<std::size_t... N>
void meta_switch(int i, std::index_sequence<N...>) {
    ((i==N && (stuff<N>(), true)) || ...) || (stuff<100>(), true);
}
}

void meta_switch(int i) {
    return bits::meta_switch(i, std::make_index_sequence<4>());
}


Premier constant : c'est pas ultra lisible. mais ça fait parti du charme (de l'hètre ?).


On notera en vrac et dans le désordre :



	l'utilisation d'une fold expression , cru 2017, pour chainer les conditions

	l'évaluation paresseuse des opérateurs && et || pour gérer le default et le chaînage

	le vieux trick (stuff<N>(), true) qui ne crée par un tuple mais évalue stuff<N> puis renvoie true pour palier à l'absence de valeur de retour de stuff<N>



Mais la chose la plus savoureuse, c'est l'assembleur généré par clang dans ces deux cas, que je vous livre sur godbolt. C'est exactement le même, ce qui est quand même poilant (poil aux dents).


Bref, le C++, c'est parfait pour l'ivresse du soir !




EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

