

Journal Les codes fantastiques (et où les trouver)

Posté par serge_sans_paille (site web personnel) le 01 juillet 2023 à 21:35.
Licence CC By‑SA.

Étiquettes :

	glmf

	clang

	c

[image:]

Demat' iNal,

Depuis fin 2022, j'anime une petite rubrique dans GNU/Linux Magazine, intitulée les codes fantastiques, où est décrit en une page une petite aventure informatique, un bout de code qui m'a amusé / plus / interpelé. [0]

Comme c'est les 25 ans de LinuxFR, et que j'en écris plus que ce qu'ils peuvent publier (trois d'avance pour le moment !), voici une sorte de ?hors série? que je ne publierai pas là bas du coup.

Les codes fantastiques : C curieux

Serge Guelton

Bricoleur interrogateur

Continuons cette série sur les codes fantastiques avec une illustration de l’outil clang-query.

Depuis C99, il est possible de déclarer une fonction C avec le mot-clef inline (mot-clef ironiquement hérité du C++). Ce mot-clef bien connu a deux effets : il suggère au compilateur de procéder à l’expansion du corps de la fonction sur les différents sites d’appels, et il donne à la fonction associée le linkage ODR, One Definition Rule, ce qui permet au symbole associé d’être présent dans plusieurs unité de compilation sans créer de conflit de nom lors de l’édition de lien.

Il arrive parfois que l’on déclare une fonction dans un fichier d’en-tête mais qu’on oublie de la marquer inline. Comment détecter cela lors des tests ? On va immédiatement passer aux oubliettes les solutions à base d’expressions régulières, puisqu’on peut utiliser un outil qui se base sur la libclang et qui se nomme clang-query.

>>> sudo dnf install /usr/bin/clang-query

Cet outil permet d’exprimer des requêtes sur un code, à la manière d’expressions régulières sur l’AST (Abstract Syntax Tree). Il fournit une REPL qui va nous permettre de jouer un peu, mais commençons par un exemple bateau pour naviguer en eaux calmes [1]:

// foo.h
#include <stdio.h>
void foo() { puts("hello");}
inline void bar() { puts("demat"); }
extern void foobar();

Et regardons la session suivante :

$ clang-query foo.h --
clang-query> match functionDecl()
109 matches.
clang-query> match functionDecl(isExpansionInMainFile())
[...]
3 matches.
clang-query> match functionDecl(isExpansionInMainFile(), isDefinition())
[...]
2 matches.
Clang-query> match functionDecl(isExpansionInMainFile(), isDefinition(), unless(isInline()))

Match #1:

/home/ssp/articles/GLMF/00008-clang-tidy/foo.h:3:1: note: "root" binds here
void foo() { puts("hello");}
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 match.

La première requête attrape toutes les fonctions, y compris celles venant de l’expansion de stdio.h. La deuxième applique un sélecteur supplémentaire sur l’origine de la fonction pour se concentrer sur les fonctions définie directement dans le fichier, mais elle attrape aussi foobar(). On limite donc la requête aux définitions pour le troisième essai, tandis que la quatrième exclut de la sélection les fonctions marquées inline. On peut sauvegarder ce script dans un fichier pour ensuite l’appeler de manière non-interactive :

$ clang-query -f detect-non-inline.query foo.h
[...]
$ cat detect-non-inline.query
match functionDecl(isExpansionInMainFile(), isDefinition(), unless(isInline()))

Ce petit exemple (légèrement amélioré) est utilisé dans l’intégration continue du projet xsimd. C’est donc un cas réel même s’il n’utilise qu’une toute partie des possibilités de clang-query que je vous invite à découvrir en lisant https://clang.llvm.org/docs/LibASTMatchersReference.html.

[0]: Liste des articles même si pour cette série là, ils ne sont pas encore passé sur une license CC-by-NC-ND

[1]: exemple bateau… eau trouble… qu'est ce qu'on rigole !

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

