

Journal Pixel Art et C++14

Posté par serge_sans_paille (site web personnel) le 03 avril 2018 à 11:26.
Licence CC By‑SA.

Étiquettes :

	c++14

	frozen

[image:]

Petit délire illustrant l'usage de constexpr et de la biliothèsque frozen.

Première étape : faire un dessin en pixel art, par exemple:

 constexpr unsigned char bytes[] = " ### ### "
 " ##### ########## ##### "
 " ####### ####### "
 " #### #### "
 " ### ### "
 " # # "
 " # # "
 " # ### ### # "
 " # ##### ##### # "
 " # #### # # #### # "
 " # #### # # #### # "
 " # ##### ##### # "
 " # ### ## ### # "
 " # ## # "
 " #### RRR RRR #### "
 " ######RRRRR RRRRR###### "
 " ######RRRRRRRRRRRR###### "
 " ######RRRRRRRRRRRR###### "
 " ######RRRRRRRRRRRR###### "
 " #######RRRRRRRRRR####### "
 " ##### RRRRRRRR #### "
 " ### RRRRRR ## "
 " RRRR ";

On remarquera l'énorme code de couleur espace → blanc, # → noir et R → rouge.

Ensuite on encode cette colormap dans une petite table de hash (oui dans ce cas un tableau de char suffirait) :

#include <frozen/map.h>

constexpr frozen::map<char, std::array<char, 3>, 5> Tans{
 {'R', {(char)0xFF, (char)0x00, (char)0x00}},
 {'G', {(char)0x00, (char)0xFF, (char)0x00}},
 {'B', {(char)0x00, (char)0x00, (char)0xFF}},
 {'#', {(char)0x00, (char)0x00, (char)0x00}},
 {' ', {(char)0xFF, (char)0xFF, (char)0xFF}},
};

Et comme on est tout foufou, on demande au compilateur C++ de traduire cette image pixel art en image au format PPM, à compile time

constexpr unsigned itoa(unsigned char * start, unsigned i) {
 constexpr unsigned step = sizeof(unsigned) * 3;
 for(unsigned k = 0; k < step; ++k)
 *start++ = ' ';
 do {
 *--start = '0' + i % 10;
 i /= 10;
 } while(i);
 return step;
}

template <unsigned H, unsigned W> struct ppm {
 unsigned char bytes[9 /* fixed header*/ + sizeof(unsigned) * 3 * 2 /* to hold sizes */ + 3 * H * W];

 constexpr ppm(unsigned char const *data) : bytes{0} {
 unsigned j = 0;
 bytes[j++] = 'P';
 bytes[j++] = '6';
 bytes[j++] = ' ';

 j += itoa(bytes + j, H);

 bytes[j++] = ' ';

 j += itoa(bytes + j, W);

 bytes[j++] = ' ';
 bytes[j++] = '2';
 bytes[j++] = '5';
 bytes[j++] = '5';
 bytes[j++] = '\n';
 for (unsigned i = 0; i < H * W; ++i) {
 auto const code = Tans.find(data[i])->second;
 bytes[j + 3 * i + 0] = code[0];
 bytes[j + 3 * i + 1] = code[1];
 bytes[j + 3 * i + 2] = code[2];
 }
 }

 void save(char const path[]) const {
 std::ofstream out{path, std::ios::binary};
 out.write((char *)bytes, sizeof bytes);
 }
};

On vient donc de créer une image dans un format binaire, en embarquant les sources de cette binaire dans les sources. À quand un encodeur jpeg constexpr?

PS: sources complètes par ici

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

