

Journal PyConfr2017 - Boudu !

Posté par serge_sans_paille (site web personnel) le 26 septembre 2017 à 11:20.
Licence CC By‑SA.

Étiquettes :

	pyconfr

	python

[image:]

PyconFr, tu viens pour les talks et tu te retrouves à apprendre plein de trucs en discutant avec les uns et les autres. Et puis entre les anciens étudiants, les core devs Python ou Mercurial, il y avait du beau monde et plein de trucs à apprendre. Hop aperçu non exhaustif des deux sujets qui m'ont marqués (ce qui n'enlève évidement aucun intérêt aux autres sujets).

Mais avant ça merci à Quarkslab pour m'avoir permi d'aller à cette conf, et un spécial merci à @VictorStinner pour sa patience.

Les Aventuriers du Packaging Perdu

lien vers le résumé

Honnêtement, je partais sceptique sur cette conf, pensant avoir suffisament roulé ma bosse sur le sujet. Mais j'ai découvert pleins de trucs !

	La possibilité de migrer une partie des infos présentent dans le setup.py vers le setup.cfg, on en apprend bien sur plus en lisant la doc sur le setup.cfg.

	Petite piqûre de rappel sur le schéma de version utilisé dans Python PEP440. On notera le suffix post0 pour les petits patchs en douce post release et le suffix dev pour… les versions de dev.

	Découverte du paquet twine qui corrige certains soucis de sécurité (entre autre) liés à python setup.py sdist upload.

	Découverte de la version test de pypi, qui permet de tester l'upload d'un projet sans que ce soit visible par la version officielle (twine upload -r test)

	Découverte de l'initiative manylinux qui vise à faciliter la construction de wheel portable. Ça passe par des images docker basées sur CentOS, ce qui semble une bonne idée.

L'humour de la présentation était goûtu « Did you ever metadata you didn't like? », « parce que c'est notre projet »… J'ai ri.

Tester les performances, pourquoi et comment ?

lien vers le résumé

Argumentaire très intéressant comme quoi les performances sont une fonctionnalité comme une autre du code, qu'elles font partie de l'expérience utilisateur. Et qu'elles méritent leurs tests.

Parmi tous les problèmes rencontrés, on compte la reproductibilité, le besoin d'un historique pour détecter les changements… Une remarque qui m'a bien plue : penser à séparer la partition sur laquelle s'exécute les benchmarks du reste, pour éviter les effets de bords. L'outil utilisé pour gérer la collecte des benchmarks s'appelle asv et pour attaquer en mode force brute le problème de la reproductibilité, une machine dédiée a fait l'affaire !

Et c'est dans tout, c'que je n'dis pas, que tu te reconnaitras

Les discussions de traverses et certains exposés m'ont donné des idées / éveiller à de nouveaux concepts, alors je les refourgue, tel un margoulin (cc @wisk) ici.

	CPython utilise un script interne basé sur des annotations dans des commentaires autour de certains builtins C pour harmoniser la documentation, et optimiser l'unboxing des arguments. Vive le code généré !

	Dans CPython, plusieurs fichiers générés (genre le ./configure ou ceux générés par la fonctionnalité ci-dessus) sont stockés dans le dépôt git, avec un hook de commit qui s'assure qu'ils soient à jour.

	Une sorte d'annuaire à l'ancienne de softs Python une taxonomy python

	Les annotations de type, qui faisaient l'objet de mon exposé, sont utiles à des projets comme moyen de documentation, et pour permettre de vérifier que l'interface des plugins est bien respectée.

	L'idée d'avoir des tests de non-regression de performance en normalisant par rapport à une référence calculée dynamiquement. Dans le cadre de pythran, on pourrait par exemple vérifier que le code généré va k fois plus vite que le code numpy, mais ça reste dépendant de la version du compilo etc, donc la fenêtre de test risque d'être assez lâche.

	Quand on habite dans le sud de la france, on peut avoir des scorpions en liberté dans son jardin o_O

	la réponse officielle au problème de typosquatting dans PyPi, super bien documentée !

Concernant les annotations de type, j'ai bien aimé la question qui demandait comment documenter le type de retour de la fonction suivante :

def foo(n: int):

 class SomeTypeDependingOnN(object):
 some_attr: int = n

 return SomeTypeDependingOnN

Qui est une sorte de meta-classe du pauvre. Et bien ça parait compliqué vu que le type est local à la fonction :-)

Et hop, cadeau, le petit code utilisé pour introduire mon exposé :

: print((list(map(.append, map(chr, [104,101,108,108,111]))),\n", "".join(_))[1]) = []

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

