

Journal Pythran 0.8.2 — compilation de noyaux scientifiques écrits en Python

Posté par serge_sans_paille (site web personnel) le 14 septembre 2017 à 20:36.
Licence CC By‑SA.

Étiquettes :

	pythran

	python

	c++

[image:]

Sommaire

	Mâtin, quel journal !

	Cython + Pythran = ♥

	Annotations externes

	Un serpent, une pomme… ça vous rappelle quelque chose ?

	Vitesse de compilation

	Vitesse d’exécution du code généré

	Le futur

Mâtin, quel journal !

Pythran est bien vivant

 Un vrai compilateur !

 Et heure après heure,

 Le bonheur vient en codant !

Mais des mois s’écoulèrent,

 Sans que je postasse,

 Le moindre mot dans l’air,

 Ça manque un peu de classe

Et là, tout à coup, soudainement, surgit la version 0.8.2 de Pythran. Que s’est‐il passé depuis mon dernier soliloque sur LinuxFr.org ? Allez, plongeons dans le journal des modifications, mais avant ça, un petit rappel sur Pythran, par l’exemple.

Vous voyez ce bout de code (trivia : il est extrait des sources mentionnées dans ce billet) :

ctypedef fused T:
 np.float64_t
 np.float32_t
 np.int64_t
 np.int32_t

def cross1(np.ndarray[real_t, ndim=4] c,
 np.ndarray[real_t, ndim=4] a,
 np.ndarray[real_t, ndim=4] b):
 cdef unsigned int i, j, k
 cdef real_t a0, a1, a2, b0, b1, b2
 for i in xrange(a.shape[1]):
 for j in xrange(a.shape[2]):
 for k in xrange(a.shape[3]):
 a0 = a[0,i,j,k]
 a1 = a[1,i,j,k]
 a2 = a[2,i,j,k]
 b0 = b[0,i,j,k]
 b1 = b[1,i,j,k]
 b2 = b[2,i,j,k]
 c[0,i,j,k] = a1*b2 - a2*b1
 c[1,i,j,k] = a2*b0 - a0*b2
 c[2,i,j,k] = a0*b1 - a1*b0
 return c

C’est du Cython et ça permet de générer des modules natif pour Python à partir d’un langage hybride. Qu’on aime ou qu’on n’aime pas, une chose est sûre : c’est le standard de fait pour avoir de la perf en calcul scientifique quand on fait du Python .| (point barre)

Problème : la version équivalente en Python + Numpy ressemble à ça :

def cross1(c, a, b):
 c[0] = a[0] * b[2] - a[2] * b[1]
 c[1] = a[2] * b[0] - a[0] * b[2]
 c[2] = a[0] * b[1] - a[1] * b[0]
 return c

Si la version Cython s’en sort haut la main en termes de temps d’exécution (grosso modo un facteur 10 sur le cas qui m’intéresse), en termes de maintenance, ce n’est pas extra. Pythran essaie de s’attaquer au souci, en ajoutant quelques infos de type :

#pythran export cross1(float64[:,:,:,:], float64[:,:,:,:], float64[:,:,:,:])
#pythran export cross1(float32[:,:,:,:], float32[:,:,:,:], float32[:,:,:,:])
#pythran export cross1(int64[:,:,:,:], int64[:,:,:,:], int64[:,:,:,:])
#pythran export cross1(int32[:,:,:,:], int32[:,:,:,:], int32[:,:,:,:])
def cross1(c, a, b):
 c[0] = a[0] * b[2] - a[2] * b[1]
 c[1] = a[2] * b[0] - a[0] * b[2]
 c[2] = a[0] * b[1] - a[1] * b[0]
 return c

Puis, une phase de compilation statique et on retrouve les mêmes perfs que la version Cython. Voilà pour l’intro. Si vous voulez en savoir plus, je vous suggère la présentation faite tantôt à PyData Paris.

Le journal des changements, donc.

Cython + Pythran = ♥

Commençons par un changement qui n’en est pas un. Grâce au travail d’Adrien Guinet financé par OpenDreamKit, il est maintenant possible de coupler Cython et Pythran, ou du moins d’utiliser le moteur d’optimisation d’expressions de Pythran depuis Cython, en ajoutant une directive dans Cython. Concrètement, dans le code qui suit :

cython: np_pythran=True
import numpy as np
cimport numpy as cnp

def diffuse_numpy(cnp.ndarray[double, ndim=2] u, int N):
 """
 Apply Numpy matrix for the Forward-Euler Approximation
 """
 cdef cnp.ndarray[double, ndim=2] temp = np.zeros_like(u)
 mu = 0.1

 for n in range(N):
 temp[1:-1, 1:-1] = u[1:-1, 1:-1] + mu * (
 u[2:, 1:-1] - 2L * u[1:-1, 1:-1] + u[0:-2, 1:-1] +
 u[1:-1, 2:] - 2L * u[1:-1, 1:-1] + u[1:-1, 0:-2])
 u[:, :] = temp[:, :]
 temp[:, :] = 0.0

La grosse expression du bas est évaluée par pythonic, l’implémentation C++ d’une partie du paquet numpy.

Annotations externes

Il est désormais possible de mettre les annotations de type dans un fichier externe avec l’extension .pythran qui ressemblerait, pour le cas cross1 précédent, à ça :

export cross1(float64[:,:,:,:], float64[:,:,:,:], float64[:,:,:,:])
export cross1(float32[:,:,:,:], float32[:,:,:,:], float32[:,:,:,:])
export cross1(int64[:,:,:,:], int64[:,:,:,:], int64[:,:,:,:])
export cross1(int32[:,:,:,:], int32[:,:,:,:], int32[:,:,:,:])

C’est une demande utilisateur (car, oui, incroyable, il y a des utilisateurs de Pythran, et même depuis quelques mois des contributeurs réguliers !

Un serpent, une pomme… ça vous rappelle quelque chose ?

Grâce au prosélytisme de Loïc Gouarin, nous avons fait une journée d’initiation à Pythran ouverte à tous cet été (et il devrait y en avoir une sur Lyon en novembre…) et, lors de cette journée, on a réglé pas mal de problèmes d’installation et de configuration sous macOS, ce qui ne devrait pas se reproduire vu les correctifs poussés. La prise en charge de Python 3 a également bénéficié de cette épreuve du feu.

Vitesse de compilation

Si Pythran hérite de C++, une étape de compilation finale parfois poussive, il y a eu un travail de fond pour améliorer le temps d’optimisation et de génération du code C++ intermédiaire (tu trouves ça intéressant ? Moi aussi, tellement que j’ai écrit quelques centaines de lignes sur le sujet).

Vitesse d’exécution du code généré

Bon, c’est quand même le but de toute l’histoire, avoir du code natif qui trace. Et un avantage d’utiliser un compilateur pour du code de haut niveau, c’est que comme les sardines1, votre code se bonifie avec le temps. Exemple sur le code suivant compilé dans les deux cas avec GCC 6.3 en compilateur back‐end et avec les drapeaux de compilation par défaut :

#pythran export slowparts(int, int, float [][][], float [][][], float [][], float [][], float [][][], float [][][], int)
from numpy import zeros, power, tanh
def slowparts(d, re, preDz, preWz, SRW, RSW, yxV, xyU, resid):
 """ computes the linear algebra intensive part of the gradients of the grae
 """
 fprime = lambda x: 1 - power(tanh(x), 2)

 partialDU = zeros((d+1, re, 2*d, d))
 for k in range(2*d):
 for i in range(d):
 partialDU[:,:,k,i] = fprime(preDz[k]) * fprime(preWz[i]) * (SRW[i,k] + RSW[i,k]) * yxV[:,:,i]

 return partialDU

Là entre la version 0.8.0 Bloavez Mat et la 0.8.2 PyData Paris, on a un temps d’exécution multiplié par 0,76, ce qui est plutôt agréable !

Le futur

Il est agréable de regarder en arrière (premier commit en 2012) :

commit 6a0eaa62f5fa3784c0557e2bd365acb7ea576d24
Author: Serge Guelton <serge.guelton@hpc-project.com>
Date: Thu Feb 2 17:12:51 2012 +0200

 root commit.

Mais « l’escargot ne recule jamais » 2 et Pythran avance donc tranquillou, vers une meilleure prise en charge de la vectorisation automatique, une meilleure gestion des extended slices et du fuzzy slicing, une détection des conteneurs qui peuvent se contenter de la value semantic et que sais‐je encore ?

Allez, ssssssssssssss fait le serpent.

	
Et oui, il existe des sardines de garde, comme il existe des vins de garde ou des chiens de garde. ↩

	
« L’escargot est naturellement héroïque : l’escargot ne recule jamais. », Alexandre Vialatte. ↩

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

