

Journal Pythran - 0.8.7

Posté par serge_sans_paille (site web personnel) le 17 septembre 2018 à 09:42.
Licence CC By‑SA.

Étiquettes :

	pythran

	python

	numpy

	hpc

[image:]

Sommaire

	static if

	tableau à dimensions partiellements fixées

	Pas futurs

Demat'i-nal,

La mouture 0.8.7, tendrement nommée skol-loarn de Pythran, est de sortie. Rappelons que Pythran est un compilateur dédié au calcul scientifique pour Python. Il s'installe avec pip ou conda et nécessite juste un compilateur C++ qui parle le dialecte c++11 sur l'hôte. Car oui, Pythran fait partie de cette ignoble lignée des transpileurs…

Quelques liens utiles :

	Page GitHub du projet : https://github.com/serge-sans-paille/pythran

	La doc officielle : http://pythran.readthedocs.io/

	Pythran sur PyPI : https://pypi.org/project/pythran/

	Pythran sur Conda-forge : https://anaconda.org/conda-forge/pythran

	Des histoires pythranesques : http://serge-sans-paille.github.io/pythran-stories/

	Le changlog : https://pythran.readthedocs.io/en/latest/Changelog.html

Le reste de ma prose va détailler deux nouveautés qui viennent étendre le langage (strictement inclus dans Python) que Pythran supporte.

static if

Il est assez courant d'utiliser des constructions du type if a is None: do_stuff() en Python. C'est une façon (que je trouve) élégante d'implémenter un option type. Mais comment traduire ça de manière fortement typée pour des cas comme celui-là :

 def foo(x):
 if x is None or x < 0:
 y = 1
 else:
 y = x + 3
 return y ** 2

La stratégie habituellement utilisée par Pythran est de générer un code ressemblant à ça :

 template<class T>
 auto foo(T x) -> decltype((is_(x, None) || x < 0)?(1**2):((x+3)**2))
 {
 decltype((is_(x, None) || x < 0)?(1):((x+3))) y;
 if (is_(x, None) || x < 0)
 y = 1;
 else
 y = x + 3;
 return y ** 2;
 }

Ou presque (en vrai, le calcul de type est plus complexe, l'opérateur or est plus complexe). Mais quel type donné à l'expression (is_(x, None) || x < 0)?(1):((x+3)) si foo est appelé avec None en paramètre ? Dans ce cas x+3 n'a tout simplement pas de sens…

C++17 fournit une solution au problème à travers le static if, qui donnerait un truc du genre :

 template<class T>
 auto foo(T x)
 {
 static if (is_(x, None)) {
 if(x < 0) {
 auto y = 1;
 return y ** 2;
 }
 else {
 auto y = x + 3;
 return y ** 2;
 }
 }
 else {
 auto y = x + 3;
 return y ** 2;
 }
 }

en supposant que is_ est une fonction constexpr. On remarquera que le flot de contrôle a un peu changé, que cette transformation est difficile à généraliser si il y a des boucles, et qu'elle repose également sur l'inférence de type de retour de fonction de C++14. Pythran émule donc ce comportement en C++11, la mécanique pour y arriver est bien plus complexe que celle proposée dans cet article de blog qui ne gère pas les return dans le bloc gardé, mais qui s'en inspire. Un gros merci à Yann Diorcet pour avoir motiver ces devs.

tableau à dimensions partiellements fixées

Pour traiter, par exemple, une image en RGB, Pythran a toujours été un peu à la traine par rapport à cython. En effet, si on veut faire la moyenne de deux images en excluant les bords, on peut utiliser :

 #pythran export average(uint8[:,:,:], uint8[:,:,:])
 def average(x, y):
 return x[1:-1,1:-1] / 2 + y[1:-1,1:-1] / 2 # avoid saturation at the expense of a small difference

Mais en l'absence de plus d'information, impossible pour Pythran de savoir qu'il n'y aura que trois pixels dans la dernière dimension, et qu'on peut (p.e.) dérouler le parcours de cette dernière. Alors qu'en rendant les boucles explicites, c'est facile:

 #pythran export average(uint8[:,:,:], uint8[:,:,:])
 def average(x, y):
 m, n, _ = x.shape
 out = np.empty((m,n,3))
 for i in range(1, m-1):
 for j in range(1, n-1):
 for k in range(3):
 out[i - 1, j - 1, k] = x[i,j,k] / 2 + y[i,j,k] / 2
 return out

Les deux codes sont valides en Pythran mais le deuxième sent un peu sous les aisselles. Grosse source de frustration pour les habitués de la programmation de haut niveau que de devoir expliciter ces boucles, ces indices. On se sent un peu sale.

Et bien en utilisant la technique présentée dans un journal précédent, Pythran résout élégamment ce problème et il est maintenant possible d'écrire

 #pythran export average(uint8[:,:,3], uint8[:,:,3])
 def average(x, y):
 return x[1:-1,1:-1] / 2 + y[1:-1,1:-1] / 2

On n'arrive malheureusement pas encore au niveau des performances d'un code avec boucles explicites, mais la mécanique est là, et l'envie aussi :-)

Pas futurs

Les deux points évoqués dans ce journal ouvrent des perspectives intéressantes :

	support de isinstance qui pourra utiliser la même mécanique que pour is None ;

	améliorer le code généré et le runtime utilisé par Pythran pour que le code sans boucle soit aussi performant que le code avec.

Et aussi (et surtout) l'abandon de boost.simd qui est bien moribond au profit de xsimd.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

