

Journal Pythran : C++ pour les serpents

Posté par serge_sans_paille (site web personnel) le 05 décembre 2012 à 11:10.
Licence CC By‑SA.

Étiquettes :

	pythran

	python

	c

[image:]

Salut à toi, mon petit journal

Ça fait bien longtemps que je ne t'ai pas parlé de mon petit bébé cybernétique, Pythran.

Tu te rappelles de lui ? C'est un convertisseur d'un sous ensemble du langage Python vers C++11. L'idée est de mutiler légèrement le langage Python (hop, plus de classes) et d'ajouter des contraintes de typage statique pour générer un module natif optimisé à partir d'un module écrit en Python.

Sommaire

	Résumé des épisodes Précédents

	Optimisations statiques

	Projet Euler

	Liens en folie

Résumé des épisodes Précédents

Pour ceux qui ont profité de leurs vacances, j'avais écrit quelques journaux sur le sujet, et les commentaires m'ont pas mal aidés, alors hop, les liens

	http://linuxfr.org/users/serge_ss_paille/journaux/pythran-python-c

	http://linuxfr.org/users/serge_ss_paille/journaux/pythran-rampe

	http://linuxfr.org/users/serge_ss_paille/journaux/pythran-prepare-sa-mue

	http://linuxfr.org/users/serge_ss_paille/journaux/pyth-on-ran-openmp

Vous noterez les tentatives désespérées pour avoir des titres originaux. Hop une petite nimage de ma patte pour justifier le titre de celui-ci.

Optimisations statiques

Python, c'est tout dynamique et on peut pas faire grand chose en analyse statique dans le cas général (pensez donc, un zozo peux évaluer votre module dans un contexte différent en changeant les globales pour que l'identifiant int pointe sur l'intrinsèque float, ce qui va pas arranger nos histoires). Si on fige un peu les choses (comprendre on limite l'usage des modules à import ou __import__ et on oublie execfile et autres eval) on commence à pouvoir faire des choses intéressantes.

La plus grosse réalisation de Pythran dans ce domaine, c'est d'être capable de calculer si une fonction est pure (sans effet de bord, ni sur des globales ni sur les paramètres), ce qui a plein de conséquences amusantes. Par exemple

def fibo(n):
 return n if n <2 else (fibo(n-1) + fibo(n-2)

est pure, mais

def obif(n,l):
 if n > 0:
 l.append(n)

ne l'est pas.

Mais que faire de cette précieuse info ? On peut

	décider si un map peut s'exécuter en parallèle (même si ce n'est pas toujours profitable)

	faire profiter g++ de cette information précieuse

	faire de l'évaluation partielle, du genre
python
fibo(42) # on peut évaluer ça à la compilation, mais attention au temps de compil :-)

Projet Euler

À la recherche de cas test, je suis tombé (sans me faire trop mal) sur http://www.s-anand.net/euler.html qui a la bonne idée de lister pleins de petits algos en python pour répondre à pleins de petits problèmes matheux. Déjà ça montre que Python c'est bien pour faire des algos tranquillou, et puis avec quelques modifs, on a pu gonfler la base de tests :-)

Liens en Folie

Y a pleins de trucs qui se passe en Python autour des modules natifs, alors pour les curieux, voilà le résultat de ma dernière pêche (attention, quelques liens sont un peu vieux, mais je les trouve tous intéressants)

	Une bafouille du dev de Nuitka qui démonte le choix de C++11 par rapport C++03 comme back-end

	un (long) fil sur la mliste de Cython concernant le support OpenMP

	le projet de Haypo pour faire du constant folding de façon générique. Les problèmes rencontrés sont très instructifs

ssssssssssssssss fait le serpent

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

