

Journal Pythran chatouille Cython

Posté par serge_sans_paille (site web personnel) le 04 janvier 2017 à 21:49.
Licence CC By‑SA.

Étiquettes :

	pythran

	cython

	python

[image:]

Bonsoir'nal

Peux-être te souviens-tu de Pythran, ce compilateur pour Python spécialisé pour le calcul scientifique ? Si ce n'est pas le cas Alzheimer te guette, mais une médicamentation est toujours possible :

- le tag pythran sur LinuxFr

- le blog technique du projet

Quoiqu'il en soit, j'ai eu l'envie soudaine, inopinée et irrésistible de me re-balader sur |StackOverflow](http://stackoverflow.com/) à le recherche d'un cas test à optimiser. Et là je tombe (ouille) sur ce post qui explore l'optimisation en Cython. Et c'est parti pour une comparaison que j'espère pas trop biaisée.

Le code en question ressemble à ça :

import numpy as np
def npperm(M):
 n = M.shape[0]
 d = np.ones(n)
 j = 0
 s = 1
 f = np.arange(n)
 v = M.sum(axis=0)
 p = np.prod(v)
 while (j < n-1):
 v -= 2*d[j]*M[j]
 d[j] = -d[j]
 s = -s
 prod = np.prod(v)
 p += s*prod
 f[0] = 0
 f[j] = f[j+1]
 f[j+1] = j+1
 j = f[0]
 return p/2**(n-1)

Y a des appels au package de calcul scientifique numpy et des accès directs de tableau dans une boucle while. les premiers sont hors d'atteinte de cython, mais les deuxièmes --- si on annote le code efficacement --- ouvres de belles perspectives d'optimisation : pour faire simple l'utilisateur va annoter toutes les déclarations de variables pour permettre à cython de transformer le code Python en code C faisant le moins d'appels possible à l'API C de CPython. Et le meilleur code trouvé par la communauté donne ça :

import numpy as np
cimport numpy as np
cimport cython
from libc.stdlib cimport malloc, free
from libc.math cimport pow

cdef inline double sum_axis(double *v, double *M, int n):
 cdef:
 int i, j
 for i in range(n):
 for j in range(n):
 v[i] += M[j*n+i]

@cython.boundscheck(False)
@cython.wraparound(False)
def permfunc_modified(np.ndarray [double, ndim =2, mode='c'] M):
 cdef:
 int n = M.shape[0], j=0, s=1, i
 int *f = <int*>malloc(n*sizeof(int))
 double *d = <double*>malloc(n*sizeof(double))
 double *v = <double*>malloc(n*sizeof(double))
 double p = 1, prod

 sum_axis(v,&M[0,0],n)

 for i in range(n):
 p *= v[i]
 f[i] = i
 d[i] = 1

 while (j < n-1):
 for i in range(n):
 v[i] -= 2.*d[j]*M[j, i]
 d[j] = -d[j]
 s = -s
 prod = 1
 for i in range(n):
 prod *= v[i]
 p += s*prod
 f[0] = 0
 f[j] = f[j+1]
 f[j+1] = j+1
 j = f[0]

 free(d)
 free(f)
 free(v)
 return p/pow(2.,(n-1))

C'est (un peu) verbeux et certains bouts de code ont été recodés à la main (la fonctionsum_axis par exemple) mais ça reste proche du code d'origine.

Une fois compilé avec cython et transformé en un module natif:

> cython perm.pyx
> gcc -O3 -march=native perm.c -shared -fPIC `python-config --cflags --libs` -o perm.so

On peut lancer quelques benchmarks. Et au lieu d'utiliser le vénérable module timeit, j'ai joué avec perf développé par le sympatique haypo.

> python -m perf timeit -s 'from scipy.stats import ortho_group; from perm import permfunc_modified as npperm ; import numpy as np; np.random.seed(7);M = ortho_group.rvs(23)' 'npperm(M)'
.....................
Median +- std dev: 106.1 ms +- 1 ms

Sympa ! Par rapport à la sortie de timeit j'ai des infos sur la déviation standard (et là ça va mon bench a l'air stable) et ça me sort la médiane au lieu du minimum.

On a donc notre score à battre : 106.1ms.

Passons donc à Pythran. Là c'est facile, on a juste à ajouter un commentaire sur le fichier initial :

#pythran export npperm(float[:,:])
import numpy as np
def npperm(M):
 n = M.shape[0]
 d = np.ones(n)
 j = 0
 s = 1
 f = np.arange(n)
 v = M.sum(axis=0)
 p = np.prod(v)
 while (j < n-1):
 v -= 2*d[j]*M[j]
 d[j] = -d[j]
 s = -s
 prod = np.prod(v)
 p += s*prod
 f[0] = 0
 f[j] = f[j+1]
 f[j+1] = j+1
 j = f[0]
 return p/2**(n-1)

À noter pour les habitués que depuis peu, pythran s'est vu doté d'un vérificateur de type qui lui permet de détecter certaines (mais pas toutes) erreurs. Par exemple si j'avais écrit :

#pythran export npperm(float)

J'aurais eu le message suivant :

CRITICAL I am in trouble. Your input file does not seem to match Pythran's constraints...
E: Specification for `npperm` does not match inferred type:
expected `Callable[[Array[1 d+, T0]], Array[0 d+, T1]]`
got `Callable[[float], ...]`

Comprenne qui voudra, il vaut mieux avoir lu la PEP484 pour piger les notations. Mais en gros Pythran a estimé que le type de npperm c'était fonction qui prend un tableau au moins 1D et renvoie un tableau au moins 1D et il est pas content car on lui file un nombre flottant.

Donc on compile :

> pythran perm.py

Puis on lance le bench, nos mains moites d'anxiété :

> python -m perf timeit -s 'from scipy.stats import ortho_group; from permpy import npperm ; import numpy as np; np.random.seed(7);M = ortho_group.rvs(23)' 'npperm(M)'
.....................
Median +- std dev: 173 ms +- 6 ms

Moarf, c'est moisi :-/ Ah mais on a oublié d'utiliser la vectorisation, tsss. On recommence

> pythran perm.py -DUSE_BOOST_SIMD -march=native

Et là

> python -m perf timeit -s 'from scipy.stats import ortho_group; from permpy import npperm ; import numpy as np; np.random.seed(7);M = ortho_group.rvs(23)' 'npperm(M)'
.....................
Median +- std dev: 93.7 ms +- 3.9 ms

On est dans les mêmes ordres de grandeur, on a fait moins d'effort, on a honteusement fait de la pub pour boost.simd et pour perf, c'est tout bon !

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

