

Journal Quelques surprises techniques dans Pythran

Posté par serge_sans_paille (site web personnel) le 07 novembre 2019 à 07:51.
Licence CC By‑SA.

Étiquettes :

	pythran

	python

[image:]

Demat' iNal,

Il y a peu sortait la version 0.9.4 du compilateur Pythran, délicatement appelée Hollsent. Pour rappel, Pythran est un compilateur pour du code scientifique écrit en Python, canal optimisation de performances.

À cette occasion, en plus de l'habituelle annonce sur la mliste de diffusion, un petit pot-pourri des améliorations techniques a été rédigé par votre serviteur. Et comme c'est quand même plus marrant d'écrire en français, en voici une traduction libre.

C'est surprenant, mais il y a dans cette sortie des choses que je n'aurais jamais cru voir dans Pythran. Et surtout, c'est venu tout naturellement. Si si.

Support (partiel) de isinstance(...)

Cet innocent bout de code est complètement valide en Python :

def abssqr(x):
 if isinstance(x, complex):
 return x.real ** 2 + x.imag ** 2
 else:
 return abs(x) ** 2

Mais il a longtemps été invalide en Pythran, à cause de la garde sur isinstance(...). Si on instanciait cette fonction sur un float, on se payait une erreur comme quoi il n'y a pas de méthode real sur un nombre flottant.

Ce genre de test que l'on pourrait résoudre lors de la compilation n'est pas sans rappeler le if constexpr introduit en C++17. Et la construction syntaxique est assez proche d'un if x is None:. Construction supportée par Pythran ! Après quelques détails techniques que je vous passe (mais dont vous pouvez avoir un avant goût avec pythran -P moncode.py), liés au fait que Pythran utilise C++11 comme backend, on s'en sort très bien.

Pour la blagounette, le code sus-cîté est de toute façon optimisé par Pythran sous la forme abs(x) ** 2 qui est un motif connu et remplacé par un appel à un intrinsèque. Mais bon, c'est pour l'exemple.

Support (incomplet) de type(...)

Encore une histoire de (sale) type. On sent que ce n'est pas ma tasse de thé… Et pourtant l'implémentation dans pythonic est d'une simplissime simplicité :

template <class T>
typename type_functor<T>::type type(T const &)
{
 return {};
}

où type_functor fait juste une association entre un type et un foncteur permettant de générer des objets de ce type, du genre

template <class T>
struct type_functor<types::list<T>> {
 using type = functor::list;
};

Ce qui est fascinant, c'est que functor::list existait déjà dans Pythran, pour représenter le builtin list(...). Il se passe des choses…

Grâce à type(...) on peut écrire de jolis codes polymorphes, avec des fonctions d'ordre supérieur, comme :

def poly(x, l):
 return type(x)(l) + x

Et ça passe crème dans Pythran, youhou.

clang-cl.exe

Et oui, un .exe. C'est fou ! En général, les extensions natives sous Windows sont compilées par le Microsoft Visual Studio Compiler. C'est même une obligation codée en dur dans distutils (contrairement à Linux où l'on peut paramétrer assez facilement le compilateur utilisé).

 Et un des problèmes avec ce compilateur, c'est qu'il peine terriblement à compilé du C++11 un peu poilu, là où clang-3.5 et gcc-5 s'en sortent très bien… Et comme j'ai des utilisateurs Windows… Et bien en tirant profit de clang-cl.exe, qui fournit une interface compatible avec cl.exe, on peut enfin compiler du C++ moderne sous MS.

Il y a bien eu besoin d'une petite modification de singe sur distutils, mais une petite crasse est peu de chose à ce niveau… Et bien que l'approche ne soit pas officiellement compatible, ça marche chez moi enfin, sur AppVeyor.

Support de Python 3.8

La représentation interne de Pythran est proche de celle de l'ast Python, mais elle se doit d'être capable de représenter les différentes versions de dernier : py2, py35, py36, py37, py38. Un travail grandement facilité par l'existence du paquet gast dont je remercie chaleureusement l'auteur !

Comme prévu, cette bafouille est plus longue que la version anglaise, et beaucoup plus agréable pour moi à rédiger, en espérant qu'elle ait été agréable à lire !

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

