

Journal Retour d'expérience sur l'empaquetage d'une bibliothèque native pour Python

Posté par serge_sans_paille (site web personnel) le 26 mai 2019 à 22:42.
Licence CC By‑SA.

Étiquettes :

	pythran

	python

	wheel

[image:]

Jonbour, Nal !

Je vais t'écrire au sujet de l'empaquetage d'une bibliothèque native pour Python, à travers un bref retour d'expérience un tant soit peu motivé, avec des choix pas évidents dedans et un petit vernis technologique pour attirer le chaland. Tu es ferré ? C'est parti.

Le compilateur Pythran est principalement distribué à travers PyPI. La majorité des dépendances sont des dépendances bien empaquetées sous PyPI (par exemple les paquet networkx ou numpy, mais il y a trois dépendances un peu complexes à gérer :

	Un compilateur C++ moderne (enfin, si on considère que le support de C++11 défini un compilateur moderne, auquel cas je suis au regret d'annoncer que ICC n'en fait pas partie.

	Quelques dépendances sur des fichiers d'en-tête, Boost et xsimd pour ne pas les nommer.

	Une implémentation des BLAS.

Le point 1 est à la charge de l'utilisateur, et c'est moins un problème en 2018 que cela ne l'était en 2013. Le point 2. est configurable lors de la construction du paquet : soit on repose sur la version système, soit on embarque une copie (minimale, pas tout Boost hein. L'outil bcp fait d'ailleurs ça très bien) dans le paquet Python, ce qui est le comportement par défaut, toujours pour garder la simplicité de déploiement.

Le point 3. est un vrai problème. Il existe plusieurs implémentations courantes des BLAS (la MKL d'Intel, OpenBLAS, Atlas…) mais je n'ai aucune garantie qu'elle soit présente sur le système. Il n'est pas très raisonnable d'embarquer les sources d'une des implémentations et espérer les recompiler lors de l'installation (c'est techniquement faisable, mais assez gourmand en ressources, une dizaine de minutes sur mon laptop).

Numpy, qui est déjà une dépendance du projet, embarque parfois une version compilée, liée dynamiquement, des OpenBLAS. Ce n'est malheureusement pas une garantie et je n'ai pas trouvé de moyen simple et portable d'obtenir un pointeur vers le chemin de cette bibliothèque depuis une installation de Numpy… (une inspection de /proc/<pid>/maps sous Linux ferait l'affaire, mais quel bazar ! Et puis niveau portabilité c'est pas le Graal.

Je me suis alors dit profitons des wheel Python pour livrer une version liée dynamiquement des OpenBLAS. Ça parait bien et on pourrait même imaginer que Numpy, SciPy etc se mettent à utiliser cette version. C'est d'ailleurs ce que fait le gestionnaire de paquet alternatif conda, pas mal prisé dans le monde du calcul scientifique en Python. Alors pourquoi pas pip ?

Cette solution n'est malheureusement pas satisfaisante dans le cadre de Python, ou alors je suis passé à côté d'un truc. Imaginons ce scenario :

	Bob compile sur la machine A le fichier alice.py en alice.so, en liant avec la libopenblas.so fournit par l'hypothétique paquet Python éponyme.

	Bob charge sur la machine A son module alice.so. Malheureusement libopenblas.so n'est pas dans un des chemins de recherche de l'application !

	Bob connait ses gammes, et utilises l'option -rpath de l'éditeur de lien pour enregistrer dans sa lib la localisation de la libopenblas.so. Malheureusement, il n'y a pas de mécanisme équivalent sous Windows !

	Bob s'en bas les steak de Windows et décide de distribuer son application avec un -rpath positionné. Drame, ses utilisateurs n'ont pas installés la libopenblas.so en utilisant la même arborescence de fichier que lui…

Ma conclusion après avoir (un peu !) étudié le sujet, c'est que le monde Python n'est pas fait pour empaqueter des bibliothèques partagées de la sorte. Soit on embarque les dépendances comme le fait Numpy, soit on fait confiance au système. Soit on crée un nouveau gestionnaire de paquet pour régler le problème (et on l'appelle conda). Notons que l'empaquetage d'exécutable pose moins de soucis. J'ai découvert que cmake est disponible via pip.

Comme je suis persévérant (personne ne persévère, car chacun a ses vers à soie), j'ai quand même fournit une version compilée statiquement des OpenBLAS, sous forme de wheel et sous le nom de pythran-openblas ce qui offre la possibilité au code Pythran d'être indépendant de son environnement --- cela reste une option, on peut choisir d'utiliser une lib système fournit par l'utilisateur.

C'est le meilleurs compromis que j'ai pu trouver : embarquer toutes les dépendances par défaut (sauf le compilateur :-) !) et laisser la possibilité à l'utilisateur averti de ne pas dupliquer les dépendances…

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

