

Journal Sortie de C++ 2000

Posté par serge_sans_paille (site web personnel) le 01 avril 2021 à 11:07.
Licence CC By‑SA.

Étiquettes :

	c++

[image:]

Depuis la sortie de C++11, la langage C++ a connu de nombreuses évolutions: C++14, C++17 et enfin C++20 l'an dernier.

Cependant, ce rythme de sortie semblait assez lent aux vrais amateurs de C++, aussi le C++omité de standardisation a-t-il décidé de sortir une nouvelle version, affectueusement nommée C++2000. Fidèle à sa volonté de simplification du langage, le C++omité n'a intégré que les fonctionnalités les plus attendues et nécessaires :

	Une nouvelle syntaxe pour apporter la puissance des template à l'assembleur inline, en réutilisant le mot clef register qui tombait en obsolescence :

template<register r0, register r1>
__asm
 {
 mov r0, num ; Get first argument
 mov r1, power ; Get second argument
 shl r0, cl ; 2 to the power of CL
 }

Malgré un fort lobby de la communauté hardware, la possibilité d'utiliser ces fonctions assembleur template dans un contexte constexpr a été repoussée à la prochaine version, C++4000.

	Un nouveau mot clef, constfork, permet désormais d'appeler un processus externe pendant la compilation, et d'injecter sa sortie dans le processus en cours. Cette fonctionnalité s'inscrit dans la volonté déjà bien amorcée de supprimer le préprocesseur, puisqu'elle rend obsolète l'utilisation des #include

// #include <iostream>
constfork "cat /usr/include/c++/v1/iostream"

Nul doute que cette fonctionnalité permettra également de simplifier le système de build en intégrant les générateurs de code directement dans le fichier qui les utilise.

// generate header file for python compatibility
constfork "swig /mon/fichier/python.py -o -"

	Les en-têtes de <iostream> ont reçu un traitement spécial qui permet de les utiliser dans un contexte constexpr. Cela devrait faciliter le debug d'applications en permettant d'afficher des messages de traces pendant la compilation, voire de demander des entrées utilisateur pendant la compilation, rendant ainsi le processus de compilation plus intéractif.

	Afin de contrer la montée du langage Rust qui menace la communauté C++, le C++omité a également pris la (très sage, à mon avis) décision d'interdire les erreurs de segmentation. Grâce à cette décision, le C++ est enfin un langage sûr, on se demande pourquoi cette décision n'a pas été prise plus tôt.

Je me réjoui que le C++omité prenne enfin des décisions fortes pour l'amélioration du langage. Et toi, cher lecteur ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

