

Journal Switch, chaîne constante et c++

Posté par serge_sans_paille (site web personnel) le 31 août 2016 à 10:48.
Licence CC By‑SA.

Étiquettes :

	c++14

	c++

[image:]

Salut 'Nal (ah non, ça marche pas)

Lors d'une discussion avec un collègue, ça chambrait 1 gentillement sur l'absence de switch sur des chaînes constantes en C++. Ça a déclenché quelques recherches de mon côté, et voilà ce que j'ai pu trouver (les codes qui suivent ne sont que le reflet de ce que j'ai pu lire en ligne, rien de nouveau sous le soleil brestois)

Approche LLVM : StringSwitch

Source : http://llvm.org/docs/doxygen/html/StringSwitch_8h_source.html

L'idée est de simuler une cascade de

if(str == "str0")
 return value0;
else if(str == "str1")
 return value1;
else
 return value2;

La solution est plutôt amusante, je vous mets une version simplifiée ci-dessous

template<typename Holder>
class StringSwitch {
 Holder const * holder_;
 std::string const value_;

 public:
 StringSwitch(std::string value) : holder_(nullptr), value_(value) {}

 template<size_t N>
 StringSwitch& Case(char const (&v)[N], Holder const& h) {
 if(!holder_ && value_.size() == N- 1 && value_ == v)
 holder_ = &h;
 return *this;
 }
 Holder const& Default(Holder const& h) {
 if(holder_) return *holder_;
 return h;
 }
};

int main(int argc, char **argv) {
 auto && msg =
 StringSwitch<std::string>(argc == 1 ? "--help" : argv[1])
 .Case("hello", "world")
 .Case("--help", "no help can be found in this world")
 .Default("");
 if(msg.empty())
 return 1;
 else {
 std::cout << msg << std::endl;
 return 0;
 }
}

Ça coûte à peine plus que la cascade de if (quelques comparaison à un pointeur nul en plus) et c'est plutôt élégant. Bien sûr ce n'est qu'un petit exemple, il faut se référer au code complet pour saisir les subtilités !

Pour réduire un peu le coût de comparaison (on en [image: \mathcal{O}(n \times m)] dans le pire des cas, où n est le nombre de case et m la taille moyenne d'une chaîne, on pourrait utiliser une std::map que l'on marquerait static const. Malheureusement, le constructeur de std::map n'est pas constexpr, donc on aurait une initialisation à l'exécution. On pourrait, pour un compromis différent, utiliser une std::unordered_map aussi.

Et pour les chagrins qui veulent du code dans leur case: on peut utiliser une std::function (mais il y a un coût caché). Un truc du genre :

#include <map>
#include <functional>

int main(int argc, char **argv) {
 static const
 std::map<std::string, std::function<int()>> Switch = {
 {"hello",
 []() {
 std::cout << "world" << std::endl;
 return 1;
 }
 },
 {"--help",
 []() {
 std::cout << "no help can be found in this world" << std::endl;
 return 1;
 }
 }
 };

 auto where = Switch.find(argc == 1 ? "--help" : argv[1]);
 return where == Switch.end() ? 1 : where->second();
}

Approche C++14

Cette approche est fortement inspirée de ce post https://dev.krzaq.cc/post/switch-on-strings-with-c11/

L'idée est de reposer sur les constexpr pour calculer un hash à compile time, et donc traduire une chaîne en un entier, valide pour un switch. Un peu de sucre syntaxique avec les user defined literals et on obtient ça :

constexpr unsigned long hash(char const* str) {
 unsigned long hash = 5381;
 int c = 0;

 while (c = *str++)
 hash = hash * 33 + c;

 return hash;
}

constexpr auto operator ""_h(char const str[], size_t) {
 return hash(str);
}

int main(int argc, char **argv) {
 switch(hash(argc == 1 ? "--help" : argv[1])) {
 case "hello"_h:
 std::cout << "world" << std::endl;
 return 0;
 case "--help"_h:
 std::cout << "no help can be found in this world" << std::endl;
 return 0;
 default:
 return 1;
 };
}

Malheureusement l'implémentation de std::hash n'est pas constexpr, sinon on aurait pu éviter de fournir une implem miteuse2 mais respectant la constexpritude.

On est pas loin du switch sur des litéraux, et ça coûte un calcul de hash + le saut.

Conclusion

Comme souvent, on a le choix en C++, et c'est ce que j'aime dans ce langage (et ce qui en fait un langage difficile à utiliser en production). Mais la monotonie n'est pas prête de venir toquer à la porte !

	
petit conseil : si ça chambre, aère ! ↩

	
http://www.pokepedia.fr/Mimitoss ↩

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

