

Journal Une structure partiellement constante en C++

Posté par serge_sans_paille (site web personnel) le 06 juillet 2018 à 09:01.
Licence CC By‑SA.

Étiquettes :

	c++

[image:]

Hop, quelques réflexions sur un langage non réflexif.

Si on veut un tableau de taille statique, on peut utiliser depuis C++11 la classe std::array<T, N>.

std::array<long, 5> my_array{{1, 2, 3, 5, 8}};

Si on veut forcer ce tableau à ne contenir que des constantes utilisables à compile-time, on a la possibilité de marquer cette déclaration constexpr.

constexpr std::array<long, 5> my_array{{1, 2, 3, 5, 8}};

Mais si on veut la marquer partiellement constante ? Et bien je soumets à votre sagacité la déclaration suivante :

std::tuple<long, std::integral_constant<long, 2>, long, std::integral_constant<long, 5>, long> my_array{1, {}, 3, {}, 8};

Alors certes on perd la possibilité d'itérer facilement (mais il reste possible de faire un visiteur de tuple), par contre on gagne en place mémoire (un std::integral_constant<...> ne prend pas de place), et on donne une info au compilateur pour, propager des constantes avec certitude, comme on peut le voir sur cet exemple.

On notera que cette astuce ne marche que grâce à l'opérateur de conversion implicite défini dans le type std::integral_constant. Mais l'astuce est plaisante.

Et n'en déplaise aux cyclistes, dans un monde peuplé d'auto, cette information portée par le type peut se propager assez loin !

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

