

Journal Ubuntu 14.04 LTS : Pourquoi il vaudrait mieux ne pas du tout s'en servir

Posté par Siosm (site web personnel) le 29 avril 2014 à 02:41.
Licence CC By‑SA.

Étiquettes :

	ubuntu

	sécurité

	critique

	centos

	fedora

	debian

	archlinux

[image:]

Sommaire

	
	Raison 1 : Noyau Linux non supporté

	
Raison 2 : Upstart
	Support

	logind

	Raison 3 : Les services sont démarrés et ajoutés au démarrage par défaut lors de leur l'installation

	Raison 4 : MySQL

	
Raison 5 : Choix de sécurité discutables
	Pollinate

	AppArmor

	Rien de plus que les autres

	Raison 6 : Compiz & Mir

	Autres supposées raisons devant vous pousser à choisir Ubuntu

	Conclusion

Ceci est une traduction de l'article publié sur mon blog personnel : Ubuntu 14.04 LTS: Why you should not use it, at all. La version anglaise est probablement plus fluide et mieux rédigée car elle a été la cible de la plus grosse partie du travail de rédaction.

Ubuntu 14.04 LTS (Trusty Tahr) vient juste de sortir (le 17 avril 2014). Cette version au support étendu (LTS) est donc toute fraîche. Pourquoi est-ce que je vous suggère alors de ne pas l'utiliser ? Ce journal détaille mes arguments.

Trop long, je ne veux pas tout lire: Quelle distribution(s) devriez-vous plutôt utiliser ?

Pour les serveurs ou les machines dans le "cloud":

	Si vous pouvez vous permettre d'attendre un peu, choisissez Red Hat Enterprise Linux (RHEL) 7 (ou CentOS 7) ;

	Si vous avez besoin de quelque chose tout de suite, utilisez soit :

	RHEL 6 (ou CentOS 6) si l'age du noyau ne vous pose pas de soucis (vous pouvez utilisez les Software Collections pour obtenir des logiciels en espace utilisateur plus récents) ;

	Fedora 20 si vous avez besoin de logiciels plus à jour (prévoyez de passer à RHEL 7 une fois disponible) ;

	Debian 7 si vous êtes OK avec le système de gestion de paquets (passer à systemd et prévoyez la mise à jour vers Debian 8 qui utilisera systemd par défaut).

Pour les machines dites de bureau (ce qui inclut les ordinateurs portables) : Fedora 20 ou Arch Linux.

Votre distribution favorite n'est pas dans la liste ? Dommage, lâchez vous dans les commentaires.

L'avantage principal des versions LTS d'Ubuntu est que les logiciels sont mis à jour pendant cinq ans. Ces versions sont aussi supposées proposer des logiciels stables et matures qui s'insèrent bien dans l'écosystème logiciel actuel. Voici les raisons qui font que cela n'est pas du tout le cas et ne le sera probablement jamais avec cette version d'Ubuntu 14.04 LTS.

Raison 1 : Noyau Linux non supporté

Cette version inclut le noyau Linux 3.13. Cette version a apparemment été choisie pour assurer une plus grande compatibilité matérielle à la sortie d'Ubuntu. Ce critère est en effet important lors du choix de la version du noyau à proposer pour les machines de bureau (rappel, cela inclut les ordinateurs portables). Mais il l'est beaucoup moins lorsque l'on se penche sur le cas des serveurs où le matériel peut demander l'utilisation d'un noyau compilé particulièrement pour celui-ci ou encore dans le cas des machines virtuelles pour lesquelles le matériel n'est plus du tout un critère important.

Donc, pour assurer une bonne expérience utilisateur sur les machines de bureau, ils ont choisi une version qui n'est pas supportée sur le long terme par les développeurs du noyau. Cela signifie que les mainteneurs du noyau Ubuntu seront les seuls à rétro-porter les patchs de sécurité et les correctifs sans aucune aide de la communauté, pendant cinq ans. Je ne connais pas les personnes responsables du maintien des patchs noyau pour Ubuntu, mais je doute de leur capacité à réaliser ce fastidieux travail alors qu'aucune autre distribution ne le fera pour ce noyau. À terme de comparaison, Red Hat a choisi d'utiliser le noyau 3.10 (qui est supporté sur le long terme officiellement) pour RHEL 7, qui n'est pas encore sorti.

À mon avis, un choix judicieux aurait été de proposer deux noyaux :

	le premier basé sur une version supportée pour les serveurs et les machines virtuelles (3.10 ou 3.12 par exemple);

	le deuxième basé sur une version à jour du noyau pour les machines de bureau.

Cela aurait aussi éviter beaucoup de travail à l'équipe de mainteneurs du noyau car :

	pour la version pour les serveurs, le travail aurait été en partie fait par la communauté ;

	pour la version pour les machines de bureau, les paquets du noyau auraient pu être partagés avec les versions futures d'Ubuntu.

Vous pourriez être tenté de me rétorquer que cela risquerait de rendre le travail des administrateurs plus complexes. J'en doute fortement puisque la distinction entre la version serveur et la version bureau d'Ubuntu est clairement présentée sur la page de téléchargement et cela n'impacterait que le noyau utilisé par défaut lors de l'installation. Les deux versions du noyau seraient disponibles dans les dépôts et les utilisateurs/administrateurs pourraient changer de version si des soucis venaient à se produire.

Raison 2 : Upstart

Cette version d'Ubuntu inclut Upstart comme processus d'init et comme processus chargé de la gestion des services. Le choix a été fait de rester sur Upstart alors que la plupart des distributions avaient déjà fait le choix de migrer sur systemd et que Debian était en train de discuter la possibilité d'une telle migration.

Support

Le premier problème ici est lié au support d'Upstart qui est maintenant considéré comme étant un projet sans avenir, mais qui va devoir nécessiter du support pendant encore cinq ans. Certaines personnes (incluant Mark Shuttleworth) clament qu'Upstart est mature et bien supporté car il a été inclus dans une grande partie des distributions (avant que systemd ne vienne le remplacer) : par exemple RHEL 6, qui sera même encore supportée après les cinq de support de la version Ubuntu 14.04 LTS.

Je suis en désaccord total avec cette position. La plupart des fonctionnalités d'Upstart ne sont pas utilisées dans RHEL 6 par exemple. Upstart est uniquement utilisé comme intermédiaire pour lancer un imposant script « à la sauce SysVinit » qui fait tout le boulot : /etc/rc.d/rc.sysinit. Il n'y presque aucun « job Upstart » natif dans RHEL 6 (tty, gestionnaire de connexion à l'environnement graphique, support de control-alt-suppr et c'est à peu près tout). Ainsi, tout le reste n'est constitué que de scripts d'init. Donc les fonctionnalités de gestion des dépendances entre les services, de gestion des événements, de gestion du cycle de vie des services ne sont pas utilisées. Les seuls vrais utilisateurs d'Upstart sont les utilisateurs d'Ubuntu et le support vient uniquement des développeurs Ubuntu (et les services proposés dans les dépôts d'Ubuntu n'utilisent pas non plus tous Upstart).

logind

Avec cette erreur de jugement mise de côté, nous pouvons nous attaquer au démon logind, ou pour faire simple, une partie du projet systemd utilisée sans systemd.

La gestion des sessions été auparavant le travail de ConsoleKit, mais le développement de ce logiciel a été stoppé il y a quelques années. L'alternative moderne est le démon systemd qui fait partie du projet systemd. Mais systemd n'est pas utilisé dans Ubuntu. Ils ont donc dû inclure une version modifiée du démon logind pour le faire fonctionner sans systemd. Ceci n'est bien entendu pas du tout supporté par le projet « upstream » et donc uniquement testé par les développeurs d'Ubuntu.

Ainsi, il n'est pas possible de s'appuyer de façon sûre sur les fonctionnalités d'Upstart, les nombreuses fonctionnalités de systemd ne sont pas disponibles et le gestionnaire de session comporte des modifications sans support du projet officiel et sera donc supporté uniquement par les développeurs d'Ubuntu.

Raison 3 : Les services sont démarrés et ajoutés au démarrage par défaut lors de leur l'installation

Cette « fonctionnalité » est héritée de Debian : les services sont démarrés et ajoutés au démarrage par défaut lors de leur l'installation, avant même que l'administrateur ait eu l'occasion de les configurer. C'est un problème de sécurité parce que n'importe quelle erreur dans la configuration d'un service peut mettre en danger le système.

Les administrateurs consciencieux doivent d'abord arrêter les services démarrés le plus rapidement possible après l'installation pour pouvoir les configurer (et éventuellement les retirer du processus de démarrage). Cela réduit à néant le supposé avantage consistant à les démarrer par défaut.

Les réponses sur Serverfaults, AskUbuntu et AskDebian ne sont pas satisfaisantes et ne sont que des « hacks » non permanents. Pour les utiliser, il faut faire attention à bien les mettre en place avant chaque appel à apt-get et ensuite faire attention à bien les retirer. Rien de tout ceci n'est bien entendu supporté et il n'est plus possible d'utiliser juste apt-get install car il faudrait alors s'assurer qu'aucune des dépendances installées ne démarre automatiquement un service.

Démarrer les services par défaut introduit une nouvelle contrainte : il faut demander à l'utilisateur certaines informations lors de l'installation lorsque les valeurs de configuration par défaut d'un service qui ne peuvent pas être devinées automatiquement.

Enfin, les services sont aussi automatiquement redémarrés lors de leur mise à jour et il n'existe pas de moyen propre de bloquer ce comportement. Il est bien entendu important de redémarrer un service aussitôt que possible après une mise à jour pour qu'il en bénéficie, mais c'est une décision qui devrait être laissée à la charge de l'administrateur.

Toutes ces « fonctionnalités » font qu'un administrateur doit être particulièrement attentif lors de l'installation de paquets sur un système ou lors des mises à jour. C'est une conséquence malheureuse pour des fonctionnalités sensées rendre la mise à jour et l'installation des paquets plus simple.

Raison 4 : MySQL

La version de MySQL disponible dans les dépôts d'Ubuntu 14.04 vient directement d'Oracle. Mark Shuttleworth a justifié ce choix avec les arguments suivants :

It's very potent when we are able to give an upstream the ability to deliver their best bits directly to Ubuntu users using the awesome immediacy of the packaging system - we can only do that when we have established a shared set of values, and this is a great example.

As for phobias, the real pitchforks have been those agitating against Oracle. I think Oracle have been an excellent steward of MySQL, with real investment and great quality.

Ce qui peut se traduire par :

C'est un avantage notable de pouvoir donner à un développeur upstream la capacité de livrer directement la dernière version de leur logiciel aux utilisateurs d'Ubuntu, à l'aide du gestionnaire de paquets. Nous ne pouvons faire cela que lorsque nous avons établi qu'un ensemble de valeurs était partagé [entre les deux projets] et ceci en est un bon exemple.

En ce qui concerne les peurs (?), les enquiquineurs sont plutôt ceux qui ont prôné l'agitation contre Oracle. Je pense qu'Oracle est un excellent mainteneur de MySQL, avec un réel investissement et une grande attention portée sur la qualité.

Bien entendu, les développeurs de MariaDB, les créateurs originel de MySQL ont un point de vue différent sur la question, comme l'ensemble des distributions qui ont choisi MariaDB comme remplacement à MySQL. Ils ont aussi fait une comparaison au niveau des fonctionnalités et ont récemment annoncé la sortie de la dernière version de leur fork de MySQL.

Raison 5 : Choix de sécurité discutables

Pollinate

Pollinate est une nouvelle « fonctionnalité de sécurité » introduite dans les images cloud d'Ubuntu 14.04 LTS. C'est un script qui va récupérer des graines aléatoires à partir d'un ensemble de « serveurs fournisseurs d'entropie » pour « amorcer » (seed) le générateur de nombre pseudo aléatoire de Linux (PRNG). Il y a plusieurs inconvénients liés à cette approche (pensez à lire les commentaires aussi). Je vais essayer de les résumer ici.

Tout d'abord, le but principal de ce script est d'améliorer la qualité des « amorces » (seed) pour les instance d'Ubuntu déployées dans le cloud, lorsque qu'aucune source d'aléatoire n'est disponible (pas de pilote virtuel virtio-rng, pas d'entrée/sortie non prévisible, pas d'amorce générée avant le lancement individuellement pour chaque instance). Pour cela, il récupère des données aléatoires à partir d'un ensemble de serveurs et par défaut, ces serveurs sont ceux hébergés par Canonical, faisant fonctionner le service Pollinate qui retourne des données aléatoires à tous ses clients.

	Premier problème évident : il faut faire confiance à cet ensemble de serveurs (bon, vous êtes déjà en train d'utiliser des logiciels fournis par la même entité qui héberge les serveurs, donc vous devriez déjà leur faire confiance de toute façon) ;

	La première session TLS sera créée avec très peu d'entropie disponible, ce qui laisse à un attaquant la possibilité de soit complètement prendre le contrôle des échanges entre le serveur et le client (MITM ou attaque de l'homme du milieu) ou de déchiffrer le contenu de la communication lui donnant ainsi une quantité d'information non négligeable sur l'état d'amorçage du générateur de nombre pseudo aléatoire de l'instance dans le cloud.

Un effet de bord très « sympathique » de cette « fonctionnalité de sécurité » pour Canonical est qu'ils vont recevoir une demande d'entropie pour chaque nouvelle instance d'Ubuntu lancée dans un cloud qui n'aura pas changé la liste de serveurs d'entropie par défaut pour le script pollen. Comme pour la plupart des options de configuration par défaut, il est peu probable que les gens prennent le temps de la changer. Ainsi Canonical aura un nombre qu'il pourra utiliser pour se gargariser de l'importance du déploiement d'Ubuntu dans les clouds, même si ce nombre ne représentera pas grand chose puisqu'il pourrait y avoir bien plus d'instance déployées (dans les clouds privés) ou beaucoup moins (que se passe-t-il si j'effectue chaque construction et test de mon projet dans une nouvelle instance "propre" d'Ubuntu ?).

Comme expliqué dans les commentaires de ce post mentionné au dessus, la bonne façon d'amorcer le PRNG d'une machine virtuelle est de soit :

	utiliser l'hôte pour générer un fichier avec du contenu aléatoire et l'insérer dans le disque de la machine virtuelle avant de la démarrer (virt-builder est capable de réaliser cette opération for example). Cette opération est indépendante de l'hyperviseur utilisé ;

	activer le pilote virtuel VirtIO RNG dans le noyau de la machine virtuelle et d'utiliser l'option de configuration correspondante pour Qemu pour l'activer pour la machine virtuelle (documentation). Cela dépends bien évidement de Qemu et de KVM.

Note: Pollinate/Pollen est peut-être bien une façon efficace d'amorcer le PRNG d'une instance d'Ubuntu dans un « mauvais cloud », mais la question est : Est-ce que les bénéfices valent les risques encourus ? Je n'en suis pas sûr.

AppArmor

Note: Je suis biaisé sur ce sujet parce que j'ai principalement étudié le fonctionnement de SELinux.

J'ai récemment jeté un coup d'oeil au support d'AppArmor dans libvirt (implémenté comme driver/plugin sVirt).

Lorsqu'une machine virtuelle est lancée en utilisant libvirtd, un processus annexe (/usr/lib/libvirt/virt-aa-helper) génère un profil AppArmor à partir de la configuration XML de la machine virtuelle dans libvirt. Ce profil autorise les accès (au niveau de AppArmor) du processus Qemu à tous les éléments définis dans la configuration de la machine virtuelle. Parmi les éléments de configuration disponible, il y a le partage de dossiers depuis la machine hôte vers la machine virtuelle en utilisant la technique de « file system passthrough » avec le pilote virtuel VirtFS (Plan 9 folder sharing over VirtIO).

Le programme annexe virt-aa-helper traduira sans se plaindre n'importe quel chemin choisi comme partage (dans la configuration XML d'une machine virtuelle) en règles AppArmor accordant l'accès en lecture et écriture à ce chemin et à ses sous dossiers. Ceci désactive une bonne partie de la protection normalement offerte par AppArmor. Cette "fonctionnalité" seule ne permet pas de passer root sur une machine parce que le contrôle d'accès classique RWX UNIX (Discretionary Access Control ou DAC) est toujours appliqué (et les processus Qemu tournent sous un utilisateur restreint : libvirt-qemu). Mais cela supprime la partie « Obligatoire » dans le Contrôle d'Accès Obligatoire (Mandatory Access Control ou MAC) car un simple utilisateur autorisé à configurer des machines virtuelles pourra désactiver une partie des protections d'AppArmor pour des machines virtuelles.

Un exploit complet nécessitera d'abord un exploit pour s'échapper de la machine virtuelle pour pouvoir accéder à l'hôte, et ensuite un exploit local root classique qui ne sera pas gêné par AppArmor autant qu'il aurait dû l'être.

Le problème majeur ici est que ce modèle autorise des utilisateurs qui ne sont pas de confiance à influencer de façon significative le profil AppArmor utilisé pour une machine virtuelle.

Note 1: J'ai utilisé ici le pilote VirtFS parce qu'il n'empêche pas le processus Qemu de démarrer si l'accès un fichier ou un dossier particulier est refusé dû aux contrôles DAC, mais n'importe quelle entrée de configuration de type « device » dans la configuration XML pourrait être utilisée pour obtenir les mêmes résultats.

Note 2: Ce cas est un exemple où le « Contrôle d'Accès Obligatoire » (MAC) devrait empêcher les utilisateurs (et même les administrateurs) de faire une action stupide (partager le dossier /etc de l'hôte avec une machine virtuelle par exemple). Un des éléments important dans le modèle de « Contrôle d'Accès Obligatoire » est que la seule entité prenant des décisions lors de l'exécution doit être le noyau (le moniteur de référence), et que ces décisions doivent être basées sur une politique ayant été écrite dans un environnement de confiance et ayant été vérifiée avec soin. La génération même partielle de politiques lors de l'exécution et sous contrôle d'un utilisateur est une violation de ce principe.

Rien de plus que les autres

Dustin Kirkland a partagé le support d'une présentation qu'il a réalisé récemment. Ce qu'il faut noter ici : 99% de ce qui est mentionné dans cette présentation n'est pas spécifique à Ubuntu et est disponible dans toutes les autres distributions. Les 1% restant incluent la « fonctionnalité » présentée au dessus : pollen.

Raison 6 : Compiz & Mir

« OK, j'ai compris, il n'est pas raisonnable d'utiliser Ubuntu sur un serveur. Mais je l'aime beaucoup sur mon ordinateur de bureau / ordinateur portable. Je dois bien pouvoir le garder ? »

Malheureusement non, je vous le déconseille. La différence principale entre une serveur et une machine de bureau est l'interface graphique, ou plus globalement la « pile graphique » : cela inclut les pilotes de carte graphique dans le noyau, le serveur d'affichage, le compositeur, les bibliothèques OpenGL… Ubuntu se reposera ici aussi sur des logiciels qui ne sont plus supportés car elle utilise toujours Compiz comme compositeur, alors que le développement a été arrêté il a plus de deux ans. Unity est le seul environnement de bureau qui utilise encore Compiz et les développeurs d'Ubuntu sont les seuls à le maintenir.

Ils ont aussi choisi de travailler sur leur propre serveur d'affichage et compositeur : Mir. Cette décision a déjà été vivement critiquée :

	2013-05-12 : Mir in Kubuntu ;

	2013-06-19 : Mir, the Canonical CLA and skewing the playing field ;

	2013-07-15 : How XMir and Mir fit together ;

	2013-08-22 : If you ever use text VTs, don't run XMir right now ;

	2013-10-02 : The state of XMir ;

	2014-03-24 : Why the Display Server DOES matter.

Bien que Mir ne soit pas le serveur d'affichage par défaut dans Ubuntu 14.04, le code pour lui permettre de fonctionner a été ajouté dans mesa notamment et dans d'autres logiciels de la pile graphique. Cela signifie que ces logiciels sont compilés avec des patchs spécifiques à Ubuntu et supportés uniquement par les développeurs de Mir.

Autres supposées raisons devant vous pousser à choisir Ubuntu

	#12 – Ubuntu is the majority of public cloud workloads : Et Microsoft Windows est installé sur la majorité des PC de bureau donc je devrais m'en servir sur toute mes machines ? Je sais que je suis un peu malhonnête dans ma comparaison, mais les nombres ne nous ont jamais rien dit sur la qualité d'un logiciel (OpenSSL ?). L'argument « Tout le monde l'utilise/le fait donc cela doit être bien » n'est pas valide.

	#11 – Ubuntu is the #1 platform for production OpenStack deployments : Et nous revoilà avec l'argument « Le plus, le mieux », mais cette fois avec des chiffres intentionnellement truqués, tirés d'un sondage sur les systèmes d'exploitation utilisés en production pour les instances d'OpenStack. Essayons de refaire les calculs à partir des sources:

	Distribution
	Nombre de voix
	Pourcentage

	Ubuntu
	111
	53,1%

	CentOS + RHEL + Scientific Linux
	49 + 21 + 2 = 72
	34,4%

	Debian
	6
	2,8%

	Fedora
	3
	1,4%

	OpenSUSE + SUSE Linux
	3 + 3 = 6
	2,8%

	Non Linux + Autres
	9 + 1 + 1 = 11
	5,2%

	Total
	111 + 49 + 49 = 209
	100% (99,7% avec les arrondis)

Rien d'impressionnant. Je suis presque inquiet pour Debian :).

	
#10 Ubuntu is built on IAAS for IAAS users :
Buzzword mania, aucune fonctionnalité mentionnée.

Conclusion

Ubuntu 14.04 est une version au support étendu. Une partie des paquets installés par défauts (pour la version serveur et pour la version bureau) sont non supportés, ne sont plus développés, sont obsolètes et certains le sont depuis plus d'un an.

Je ne comprends pas comment il est possible d'accepter cet oxymore.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

