

Journal La cochonnerie en boite que sont les systèmes de dépendances

Posté par small_duck (site web personnel) le 21 août 2022 à 13:12.
Licence CC By‑SA.

Étiquettes :

	python

	dénonce

[image:]

Aujourd'hui, un autre journal qui dénonce grave.

Il est de bon ton de nos jours pour chaque langage de programmation qui se respecte de débarquer avec un système intégré de dépendances (ou plusieurs, mais nous y reviendrons) permettant plus ou moins automatiquement de télécharger des paquets logiciels. Souvent, il est possible de faire tourner un dépôt de paquets en interne, où l'on pourra d'une part cacher ses dépendances externes, et d'autre part envoyer ses propres paquets. L'on nommera Maven pour Java, Npm pour Javascript, Cpan pour Perl, Cargo pour Rust, Opam pour Ocaml, et même Conan pour C++ (je vais me laver la bouche au savon et je reviens). Et Pip et Conda pour Python.

J'essaie d'aimer le Python. J'essaie vraiment fort. C'est juste Python qui ne m'aime pas. Et en particulier la daube infecte qu'est Conda, Miniconda, Mamba et tous leurs amis.

Déjà, le concept d'environnement. Alors ça semble vachement malin sur le papier, pouvoir dire "aujourd'hui, je mets ma casquette de data scientist, je veux Panda, Keras, et Numpy, bim, je charge l'environnement kivabien, demain je mettrai ma casquette de webdev, et je voudrai Flask et Selenium". Sauf qu'en pratique, c'est vite le bordel, dans quel environnement je suis, comment j'en change, qu'est-ce qu'il y a dedans, comment je le mets à jour. Au point que Conda décide sans rien me demander d'aller bidouiller mon prompt pour y ajouter le nom de l'environnement courant. Non mais de quoi je me mêle ? Ça va vite être un mélasse sans nom si chaque technologique que j'utilise décide d'aller se torcher dans mon .bashrc !

Ensuite, histoire que ça marche chez tout le monde, mon équipe a mis en place des environnement partagés, c'est à dire que quand je récupère la dernière version de notre code source, régulièrement y'a des scripts qui pètent, et il faut simplement aller faire tourner une bordée de scripts moches qui vont aligner l'environnement sur ma machine. Quand ça marche.

Finalement, bien sûr, ce tas de bouse se retrouve à partir en Prod. Et comme une certaine catégorie de développeurs a décidé que la modernité, c'était d'aller chercher des petites briques partout et de les combiner de manière plus ou moins heureuse parce que ça ressemble furieusement à une compétition de qui aura le plus de dépendances, on se retrouve avec des petits scripts tout simples qui ne peuvent s'empêcher d'aller appeler un obscur paquet Python pour faire quelque chose qui tenait en une ligne de bash. Et qui débarquent avec toutes leur dépendances à la noix. Bon, et puis, ces paquets, ils sont sûrs ? Ils ont des bugs ? Est-ce que la mise à jour risque de causer des problèmes ? On s'en tamponne, #YOLO !

Pouf pouf.

Ne prenons pas les enfants du bon dieu pour des canards sauvages. Les gens qui ont développé ces trucs savaient ce qu'ils faisaient, du moins je l'espère : il s'agit à mon sens d'une approche très monoposte (et monolangage) du développement, justement d'une manière très data scientist, comme on dit. Je bidouille un truc dans mon notebook Jupyter, tiens, je ferais bien tel traitement, une ligne de commande et hop, j'ai téléchargé la chose, je teste, ça marche, super, ça marche pas, je teste autre chose. Mais le raisonnement ne tient plus lorsqu'il s'agit d'utiliser le Python comme langage de script secondaire, en équipe, et de déployer des services un poil stables en production.

Je ne connais pas la solution parfaite. Les paquets système (RPM, deb) sont stables, testés, et mis à jour de manière intelligente, mais parfois on a besoin d'une version plus récente. Faire ses propres paquets systèmes et les charger dans un Docker ou un Puppet semble bien, mais c'est un investissement en temps (et en larmes). Les systèmes de paquets liés à un langage en particulier sont vite invivables, moches et instables et pètent quand ils veulent.

Donc, allez vous faire voir, Mabma, Conda, et tous vos amis. Et non, chef, je refuse catégoriquement d'intégrer Conan à notre base de code C++ juste parce que "les systèmes de dépendances, c'est le futur", parce que là ça juste marche, alors pas touche.

Alors, s'il vous plaît, dites moi comment vous faites pour échapper à l'enfer des dépendances.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars173055000avatar.jpg

