

Journal Tirez-vous une bûche, qu'on cause C++ et singletons

Posté par small_duck (site web personnel) le 14 août 2018 à 23:48.
Licence CC By‑SA.

Étiquettes :

	c++

[image:]

Le métier est venu me voir. "On aime beaucoup ton composant A, celui qui cache les données depuis la base, mais on voudrait l'instancier tout plein de fois, sans qu'il recharge tout à chaque fois."

Comme j'aime bien le métier, je me suis attelé à la tâche, je me suis bouché le nez, et je leur ai planqué une petite variable globale des familles histoire de mettre en commun les caches. Et ils étaient fort contents.

Ensuite, j'ai regardé ma variable de plus près, et je me suis rendu compte avec horreur que je venais d'implémenter un singleton ! Miséricorde.

Chacun sait que le singleton canonique est un anti-patron :

- Il est difficile à rendre réentrant

- Sa destruction est difficile à contrôler

- Il ne joue pas bien du tout avec les tests unitaires

- Et enfin, non seulement c'est une variable globale, mais c'est une variable globale que l'on ne peut pas rendre locale : on ne peut pas instancier l'objet localement, puisque son constructeur est caché.

Sauf que je dois être dans un des rares cas qui marchent. En effet, mon cache n'a pas "besoin" d'être une variable globale, et il est parfaitement correct de considérer une instance comme étant indépendante. Le fait que les instances soient partagées est un détail d'implémentation qui correspond à une exigence non-fonctionnelle de performance ou de consommation mémoire. Si l'utilisateur instancie vraiment un objet séparé, ce n'est pas grave, je n'ai donc pas besoin de rendre mon constructeur privé.

Ensuite, en utilisant des pointeurs "weak", je m'assure que l'objet est vraiment détruit quand mon utilisateur a fini de s'en servir, et j'évite donc que l'objet survive au delà de ma séquence de destruction. Bonus, cela m'assure une destruction totale à la fin de chaque test unitaire.

Et enfin, en faisant un peu attention, la réentrance n'est pas si méchante.

Forcément, j'ai eu envie de le rendre générique, ce qui m'a permis d'utiliser des paramètres variadiques, ce qui est toujours plaisant. Je vous présente donc l'engin:

#include <memory>
#include <mutex>
#include <cassert>

// Le type générique singleton
template<typename T>
class Singleton
{
public:
 // Constructeur variadique prenant les paramètres permettant de construire
 // l'objet si besoin est
 template<typename ... ARGS>
 std::shared_ptr<T> create(ARGS ... args)
 {
 // On protège notre pointeur weak
 std::lock_guard<std::mutex> lock(_mutex);
 // Est-ce que le pointeur weak pointait déjà sur un pointeur strong?
 auto strong = _weak.lock();
 if(!strong)
 {
 // Non... Créons le
 strong = std::make_shared<T>(args...);
 // Et assignons le pointeur weak
 _weak = strong;
 }
 // Retournons soit l'objet déjà existant,
 // soit le nouveau que l'on vient de créer.
 return strong;
 }

private:
 std::mutex _mutex;
 // Comme l'on utilise un weak_ptr, l'objet sera détruit
 // lorsque sera détruite la dernière instance utilisateur.
 std::weak_ptr<T> _weak;
};

// Classe de test
class A
{
public:
 A(int, double)
 {
 }
};

// Factory pour le type A
std::shared_ptr<A> createA(int a, double b)
{
 // Astuce ! Une variable définie comme "static" au sein
 // d'une fonction est en réalité globale, mais accessible
 // seulement de cette fonction. Elle sera initialisée au
 // premier appel de cette fonction, de manière thread-safe.
 static Singleton<A> singletonA;

 return singletonA.create(a, b);
}

// Test
int main()
{
 auto a = createA(1, 2);
 auto b = createA(1, 2);
 assert(a == b);
 return 0;
}

Après, l'on peut avoir besoin de créer des objets différents en fonction des paramètres d'entrée, et dans ce cas il faudrait plutôt utiliser un conteneur associatif pour garder les pointeurs weak (et la généralisation pourrait être plus ardue).

Enfin, l'on notera que cette technique ne marche que si l'utilisateur garde longtemps ses pointeurs sur A. S'il appelle createA, utilise l'objet de retour, et le détruit immédiatement, le cache sera perdu. En revanche, si A est voué à être gardé comme variable membre de plusieurs composants indépendants qui seront disponibles la majeure partie du temps de vie de l'application, le cache fonctionnera à plein.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars173055000avatar.jpg

