

Journal Kotaten : un Tap Tempo en Kotlin

Posté par SpaceFox (site web personnel, Mastodon) le 09 mars 2018 à 14:35.

Étiquettes :

	taptempo

[image:]

J'avais besoin d'un exemple quelconque pour tester différentes choses en Kotlin, dont :

	L'internationalisation

	La surcharge des opérateurs

	L'utilisation de dépendances et de libs Java

Et comme c'est la mode de faire des clones de Tap Tempo, ça me paraissait être un bon candidat. Donc voici le mien – en Kotlin, donc. Il me parait être plus dans l'esprit de la version d'origine que la version Java (qui elle aussi tourne sur une JVM).

Pour vous éviter de fouiller, voici le code source du seul fichier avec de la logique dedans :

package fr.spacefox.kotaten

import com.beust.jcommander.*
import com.beust.jcommander.validators.PositiveInteger
import com.google.common.collect.EvictingQueue
import java.text.DecimalFormat
import java.text.MessageFormat
import java.util.*
import java.util.ResourceBundle

private const val NS_PER_SECOND = 1_000_000_000L
private const val PRECISION_DEFAULT = 0
private const val PRECISION_MIN = 0
private const val PRECISION_MAX = 0
private const val RESET_TIMER_DEFAULT = 5L
private const val SAMPLE_SIZE_DEFAULT = 5

private fun Double.toBpm(): Double {
 return 60.0 * 1_000_000_000 / this
}

private operator fun ResourceBundle.get(key: String): String {
 return this.getString(key)
}

@Parameters(resourceBundle = "messages")
class Settings {
 @Parameter(names = ["-h", "--help"], descriptionKey = "options.help", help = true)
 var help = false

 @Parameter(
 names = ["-p", "--precision"],
 descriptionKey = "options.precision",
 validateWith = [PrecisionValidator::class])
 var precision = PRECISION_DEFAULT

 @Parameter(
 names = ["-r", "--reset-time"],
 descriptionKey = "options.resettime",
 validateWith = [PositiveInteger::class])
 var resetTime = RESET_TIMER_DEFAULT

 @Parameter(
 names = ["-s", "--sample-size"],
 descriptionKey = "options.samplesize",
 validateWith = [PositiveInteger::class])
 var sampleSize = SAMPLE_SIZE_DEFAULT

 @Parameter(names = ["-v", "--version"], descriptionKey = "options.version")
 var version = false

 class PrecisionValidator: IParameterValidator {
 override fun validate(name: String?, value: String?) {
 val precision = Integer.parseInt(value)
 if (precision < PRECISION_MIN || precision > PRECISION_MAX) {
 throw ParameterException(MessageFormat.format(
 ResourceBundle.getBundle("messages")["options.precision.outofscope"],
 PRECISION_MIN,
 PRECISION_MAX,
 precision))
 }
 }
 }
}

class Kotaten(settings: Settings) {

 private val input = Scanner(System.`in`)
 private val samples: EvictingQueue<Long> = EvictingQueue.create<Long>(settings.sampleSize)
 private val messages = ResourceBundle.getBundle("messages")
 private val formatter = DecimalFormat()
 private val resetTime = settings.resetTime * NS_PER_SECOND

 init {
 input.useDelimiter("")
 formatter.minimumFractionDigits = settings.precision
 formatter.maximumFractionDigits = settings.precision
 }

 fun run() {
 println(messages["instructions"])
 var key: Char
 var start: Long? = null
 var end: Long
 while (input.hasNext()) {
 key = input.next()[0]
 if (key == 'q')
 break

 end = System.nanoTime()
 if (start == null || (end - start) > resetTime) {
 samples.clear()
 println(messages["typeagain"])
 } else {
 samples.add(end - start)
 }
 start = end

 if (samples.size > 0)
 print(MessageFormat.format(
 messages["tempo"],
 formatter.format(samples.average().toBpm())))
 }
 println(messages.getString("bye"))
 }
}

fun main(args: Array<String>) {
 val settings = Settings()
 val jc = JCommander.newBuilder()
 .addObject(settings)
 .build()
 jc.parse(*args)

 if (settings.help) {
 jc.usage()
 return
 }
 if (settings.version) {
 println(ResourceBundle.getBundle("config")["version"])
 return
 }
 Kotaten(settings).run()
}

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars696063000avatar.png

