

Journal Clang compilé par Clang compile Clang et LLVM

Posté par steckdenis (site web personnel) le 05 février 2010 à 22:20.

Étiquettes :

	objective-c

[image:]

	
Bonjour,

Sous ce titre assez étrange et récursif s'annonce une excellente nouvelle pour la chère diversité à laquelle le Libre accorde tant d'importance.

Depuis quelques années, le projet LLVM essaie de créer une infrastructure de compilation, basée sur une représentation abstraite du code, indépendante de la machine. Le projet LLVM comporte également un «sous-projet» dénommé Clang, un compilateur pour les langages basés sur le C (C, C++, Objective-C et Objective-C++).

Les avantages de LLVM et de Clang par rapport à GCC sont les suivants :

	Une architecture en bibliothèques alors que GCC est un gros machin monolithique (plus tellement à partir de la version 4.5). Tout le monde peut développer d'autres bibliothèques et leurs clients, et réutiliser LLVM. Ainsi, LLVM est utilisé dans Gallium, OpenShiva, et encore quelques autres.

	La rapidité. Clang est largement plus rapide que GCC comme montré sur cette page

	Consommation limitée de RAM (il est maintenant possible de compiler en -j16 sur un double quad core HT avec seulement 2Gio de RAM sans que la RAM manque !)

	Fonctionnalités intéressantes pour le développeur (analyse de code, erreurs détaillées, etc)

Une page de comparaisons a été créé pour vous permettre de voir ce que Clang apporte.

Le C et l'Objective-C sont supportés depuis pas mal de temps, quasiment à un niveau de production. Le noyau FreeBSD est compilable par LLVM, ainsi que d'autres très gros projets.

Par contre, le C++ a toujours manqué à l'appel, et a été la bête noire de Clang. En effet, le C++ est un langage extrêmement complexe pour le compilateur (et les trolleurs diront aussi pour le programmeur), avec ses templates, ses classes, sont héritage multiples, les exceptions, etc.

Il y a quelques jours, une excellente nouvelle est tout de même arrivée sur le blog de LLVM : Clang sait se compiler lui-même !

C'est un grand pas, quand on sait que le code de LLVM est très complexe et utilise quasiment toutes les fonctionnalités du C++. Il est également très important : plus de 500 000 lignes (à en croire le billet cité ci-dessus).

C'est donc une belle avancée pour Clang. Dans quelques mois, il se pourrait que Clang compile de plus en plus de choses.

Des patches volent déjà pour compiler quelques programmes C++ utilisant Qt avec Clang. Malheureusement, bien que la compilation soit un succès, la liaison ne marche pas. En effet, Clang a encore du mal a gérer les symboles partagés de type «friend», très utilisés dans Qt pour les valeurs partagées (par exemple une chaîne nulle, un tableau vide, etc).

C'est cela qui provoquait les erreurs que je décrivait dans mon journal Clang arrive avec le C++, et ça va faire mal !. Merci d'ailleurs à tous ceux qui ont essayé de résoudre mon problème.

J'espère donc un jour pouvoir compiler Qt, puis KDE, puis tout mon environnement avec Clang.

D'ailleurs, pour parler de choses plus personnelles, j'ai encore toujours comme idée de mettre LLVM dans mon gestionnaire de paquets. J'ai réussi récemment à compiler le petit navigateur web Cream développé par une connaissance en GTK/C avec Clang, en produisant ce fameux fichier bytecode, sans toucher au moindre Makefile, uniquement en tunant les paramètres des autotools. Tout marche très bien et est très rapide.

De plus, Clang m'a également surpris. En effet, depuis un mois environ, j'essaie de développer un algorithme de différences binaires parfait, dans le sens qu'il produit le plus petit patch possible. Il n'y a pas encore de code source disponible, mais les informations sur les avancées se trouvent ici.

Bref, je m'égare. L'important ici est que j'ai utilisé Clang, et uniquement Clang, pendant tout le développement de l'application de test en C. J'ai ainsi pu profiter de sa vitesse (compilation en moins d'une seconde en -02, alors qu'une compilation de KDE tournant à côté, processeur chargé à 100%). J'ai également été très surpris par les optimisations qu'il fait. En effet, un simple -O2 m'a permis d'obtenir un exécutable plus rapide que celui produit par GCC 4.4 en -O2 ou -O3. Je n'ai plus les nombre, mais le bench prenait 0,9 secondes avec Clang, et 1,1 secondes avec GCC (grande valeur de 0,9, petite valeur de 1,1, mais quand-même).

Clang est donc plus que jamais un projet à garder à l'oeil, et qui évolue toujours plus vite :-) .

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

